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1 Introduction and Motivation

The increasing use of robots in complex settings has led to a
growing need for effective methods of interacting with such
artificial agents. Most research in this area has focused on
coordinating efforts between humans and robots during on-
going joint activities, but autonomous agents require differ-
ent modes of engaging with humans that occur mainly be-
fore and after they carry out their missions.

We are interested in scenarios in which a human comman-
der provides a robotic agent with a set of mission objectives,
the robot enters the field to achieve those objectives, and fi-
nally returns after the mission is complete. The human then
debriefs the robot by asking questions about its activities and
its reasons for making decisions. These questions need not
be in natural language, but communication must be in some
format that is easy for humans to understand.

We will say that such robots are engaging in explainable
agency. In this essay, we discuss some abilities that should
be useful for computational artifacts that demonstrate this
important capacity. The benefits of explaining one’s past ac-
tivities is not limited to robots; they hold for any agent that
operates in some environment over time. This includes syn-
thetic characters in virtual environments and systems that
play games against others, but robotic agents are important
case that we will use to illustrate the issues that arise.

2 Functions and Component Abilities
We claim that explainable agency depends relies on number

of distinct but related functions that the autonomous systems
can exhibit. We claim that an agent of this sort should:

e State the alternatives it considered during plan generation
and the reasons for making the choices it did;

e Describe cases where execution diverged from the plan,
how it responded, and its reasons for taking these steps;

e Explain these reasons in terms of environmental states,
mission objectives, and their relation to each other;

e Present its reasoning about objectives in terms of both
symbolic goals and numeric evaluation criteria;

e Describe beliefs about states in terms of object classes,
relations among objects, and their numeric attributes; and
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e Present its activities at different levels of abstraction and
detail, as appropriate to the human’s queries.

We further claim that these explanatory functions benefit
from a number of component abilities that let the agent:

e Define object categories and relations in terms of percepts
it can observe and link them to familiar words, thus sup-
porting descriptions of situations in encounters;

e Specify mission objectives as a set of symbolic goals with
associated numeric utilities that let the agent communi-
cate tradeoffs among alternatives;

e Encode plans using hierarchical structures that decom-
pose complex activities into increasingly finer subactivi-
ties, enabling their at different levels of abstraction;

e Record the choices it makes on each step during plan gen-
eration, execution, and monitoring, including the reasons
for selecting them, in an episodic memory;

o Interpret different types of questions about its activities,
use them to access relevant portions of memory, and use
the retrieved content to explain and justify its activities.

Taken together, these assumptions place high-level con-
straints on explainable agency. One can implement these
tenets in different ways, but we maintain that any robot
which exhibits the first set of abilities will also benefit from
the second set of representations and processes.

These theoretical assumptions do not specify whether the
expertise used during the agent’s planning and execution is
coded manually, learned from experience, or elements of
both. However, they provide strong constraints on any for-
malism used for manual programming and on any learning
mechanisms that acquire expertise automatically. In partic-
ular, they should combine qualitative and quantitative de-
scriptions of states, refer to both symbolic goals and numeric
utilities, and describe activities in hierarchical terms. This in
turn suggests frameworks that we should consider when de-
signing such explainable agents.

3 Representing Plans and Activities

Whether the expertise of our autonomous agent is hand-
crafted or acquired through learning, it must encode this ex-
pertise in forms that are well enough aligned with human
cognition to enable effective communication. In this section,



we consider how our representational assumptions support
the functions that we outlined earlier.

For example, although an autonomous robot has a clear
need to describe its environment in precise quantitative
terms for the purposes of recognition and control, humans
refer to physical situations using words for abstract cate-
gories, such as boulder and tree, as well as abstract relations
among them, such as behind and between (e.g., Burbridge
& Dearden, 2012). Before it can report its activities and
justify them, an explainable agent must define such qualita-
tive concepts in terms of quantitative aspects of the environ-
ment encountered during its missions. These definitions may
be encoded as logical formulae, probabilistic summaries, or
even stored cases, but they should be associated with abstract
symbols used to describe inferred and desired situations.

A similar issue arises in communicating the objectives
themselves, which have both qualitative and quantitative as-
pects. Humans tend to specify mission objectives in terms
of abstract goals, such as place a movement sensor near the
enemy camp or remain hidden from enemy radar. As be-
fore, the explainable agent must ground these concepts in
quantitative terms, but it must retain the ability to communi-
cate them using abstract categories and relations. Moreover,
such goals typically have different utilities, which them-
selves are encoded as numeric values or functions of the
robot’senvironment. An explainable agent should not rely on
a single utility for states it encounters; it should decompose
this score in different elements, each associated with a sym-
bolic goal (Langley et al., 2016). This factoring will also let
it describe its activities in terms of tradeoffs among conflict-
ing goals, say when it cannot remain fully hidden if it must
come close enough to the enemy camp to deposit a sensor.

A final representational issue concerns people’s tendency
to describe activities in hierarchical terms, at different lev-
els of abstraction. One response involves the robotic agent
encoding both mission plans and execution traces in similar
terms, with high levels denoting major steps and the low-
est level describing primitive operations. Again, this will re-
quire symbolic structures of some form to encode the de-
composition, similar to those in hierarchical task networks
(Nau et al., 2003), along with terms that denote each activity
or subactivity. However, even the highest levels of descrip-
tion may include quantitative features, such as distance trav-
eled, fuel consumed, or average flying height. When associ-
ated with temporal aggregates, such numeric summaries can
serve as important annotations to symbolic characterizations
of the agent’s activities.

4 Mission Planning and Execution

The autonomous robot in our scenario must carry out ex-
tended missions described by its human commander. The
mechanisms that support this performance are constrained
by the representational commitments that already discussed.

Planning will play an important role in most missions that
involve extended activity. Building on our representational
assumptions, an explainable agent should:

e Generate mental simulations of state sequences encoded
in terms of both qualitative relations and quantitative at-
tributes. This means not only predicting the numeric ef-

fects of actions, but also recognizing instances of cate-
gories and relations that arise in envisioned states. These
are needed to describe situations considered in planning.

e Carry out search through the space of possible plans, se-
lecting among alternative courses of action by reason-
ing about the symbolic goals that envisioned states sat-
isfy, the numeric utilities associated with these goals, and
which choices are better for the mission objectives.

e Decompose the planning task into subtasks that, when
solved, produce a hierarchical plan that describes in-
tended activity at different levels of temporal resolution.
To this end, the agent can use a first-principles planner
that explores a space of problem decompositions (Lan-
gley et al., 2016) or an HTN planner that uses domain-
specific methods to constrain search (Nau et al., 2003).

The result of this process will be one or more plans that
break the mission into subplans, that describe each antic-
ipated state in both qualitative and quantitative terms, and
that base choices on how alternative state sequences relate
to goals and utilities.

Once the autonomous agent in our scenario has formu-
lated a mission plan, it must then carry it out physically in
the field. To this end, the system should:

e Execute the sequence of activities stored in the plan, de-
termine the states these actions produce, and compare its
expectations to these states. This means drawing on con-
ceptual definitions to draw qualitative and quantitative in-
ferences about its situation, which it can then use to mon-
itor progress and detect anomalies.

e Determine whether anomalous events are sufficiently rel-
evant and important to require replanning from the cur-
rent situation. In many settings, revision will be necessary
because the agent’s original plan was based on incom-
plete or inaccurate information about the location and
types of objects it encounters during execution.

e Upon determining that it must revise the current plan, de-
ciding which elements to abandon, which to retain, and
generating a new partial plan from which to initiate re-
planning. The agent should continue this process until it
satisfies the mission’s termination criterion.

Together, these mechanisms should let the robotic agent gen-
erate, execute, monitor, and revise plans for extended mis-
sions in which it must operate with little or no supervision.
The plans it constructs will provide high-level guidance on
its behavior, while monitoring and revision will let it adapt
as needed to dynamic and unpredictable environments. Dif-
ferent settings will involve a different balance between these
two activities, but seldom will either suffice alone.

S Debriefing and Explanation

Once the robotic agent has completed a mission, the hu-
man commander should be able to debrief the system. This
process might start with it providing a brief summary of
events, but, more important, it can include answering ques-
tions about the reasons for the agent’s decisions and actions.

Such capabilities will require the system to incorporate an
episodic memory (Menager & Choi, 2016) that retains de-



tails about the mental and physical situations it has encoun-
tered. This should build on the representational and perfor-
mance assumptions described earlier, so it should store:

e For each action or hierarchical method selected during
plan construction, the goals it should achieve or main-
tain, the envisioned situation under which it would occur,
the candidate actions that were considered, the scores as-
sociated with each alternative, and the final choice made;

e For each node in the search tree generated during plan-
ning, the times at which that partial plan was created and
visited, decisions about its success or failure, and the rea-
sons for each of these choices;

e For each step of a plan that the agent executed, the ex-
pected environmental situation, the observed state, and
whether it deemed the descriptions were similar enough
to continue executing the plan without revision; and

e For each point during execution at which the agent de-
cided the observations had diverged from its expecta-
tions, which elements of the plan it retained, which ones
it eliminated, and the reasons for these choices.

This content should be stored with the initial and revised
plans themselves, not only because the latter provide natural
scaffolds for such information, but also because the reasons
for each decision were available to the agent at the time that
it created these structures.

Of course, the system must also be able to access this in-
formation during after-mission debriefing. We assume the
commander will have a trace of the robot’s plans and ac-
tivities, most likely organized hierarchically to reveal de-
tails only on demand, to serve as the basis for formulating
questions. Whether he presents these in natural language, a
graphical interface, or some other format, the agent should:

e Translate the question into a cue that specifies a point of
interest during planning or execution in the same terms
and syntax as structures in episodic memory;

e Use this cue to retrieve portions of episodic memory rel-
evant to the query, asking for clarification when multiple
results indicate ambiguity; and

e Present the retrieved answer to the human user in high-
level terms, using a format appropriate to the question
type and providing details only upon request.

The system should handle different forms of questions, from
What choices did you consider when you came to the brige?
to What objectives did you hope to achieve by taking the
left route? to Why did you select that alternative over other
options? These formats should map directly onto different
types of content stored in episodic memory, with answers
generated by filling in associated templates. The purpose is
to give the commander insights into the agent’s reasoning,
not to provide him with entertaining responses.

Together, these capacities should let the robotic agent
store the reasons for its decisions as it makes them, retrieve
this information upon request, and provide justifications in
terms that its commander will understand. Storing this con-
tent with mental structures generated during planning and
execution of the mission offers natural ways to index and
retrieve answers to queries stated in terms of its activities.

6 Closing Remarks

In this essay, we identified an important class of problems
— explainable agency — that has received little attention with
the human-robot interaction community. In these tasks, an
autonomous agent carries out an extended mission in pursuit
of human-specified objectives and, after completing it, must
answer questions about the reasons for its decisions. We
listed a number of functions that such a robotic agent should
exhibit and a set of component abilities that we maintain
will support these functions. The latter provide theoretical
constraints on alternative approaches to explainable agency.
These constraints are not unique to robotic systems, in that
they apply equally well to any intelligent agent, whether
physical or virtual, that communicates with humans. How-
ever, they are still relevant to human-robot interaction, and
they merit attention from this community.

We discussed the three main elements — representation,
plan generation and execution, and explanation during de-
briefing — in greater detail. However, our treatment was in-
tentionally abstract, as the aim was not to describe a partic-
ular solution but rather a framework that solutions can uti-
lize. We also took no position on whether the expertise used
during planning, execution, and explanation should be pro-
grammed directly or learned from experience. Nevertheless,
the theory suggests constraints on formalisms used to en-
code knowledge manually or to express the results of learn-
ing. Of course, the plan that we have proposed may require
revision during efforts to carry it out, but it seems sufficient
to let us take the first steps on this intriguing mission.
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