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Abstract

There is a need for socially assistive robots (SARs) to pro-
vide transparency in their behavior by explaining their rea-
soning. Additionally, the reasoning and explanation should
represent the user’s preferences and goals. To work towards
satisfying this need for interpretable reasoning and represen-
tations, we propose the robot uses Analogical Theory of Mind
to infer what the user is trying to do and uses the Hint En-
gine to find an appropriate assistance based on what the user
is trying to do. If the user is unsure or confused, the robot
provides the user with an explanation, generated by the Ex-
planation Synthesizer. The explanation helps the user under-
stand what the robot inferred about the user’s preferences and
why the robot decided to provide the assistance it gave. A
knowledge-driven approach provides transparency to reason-
ing about preferences, assistance, and explanations, thereby
facilitating the incorporation of user feedback and allowing
the robot to learn and adapt to the user.

Introduction
Socially assistive robots (SARs) can aid humans in a variety
of tasks. One of the most compelling assistive tasks is in
medication management, where a SAR can instruct, record,
and oversee a patient’s medication usage. However, since
this is a medical application, it is important that a robot is
robust, transparent, and open to user feedback; especially
for corrections.

However, SARs, like other social robots, are complex to
understand. Robots are built of many parts, with underlying
language tools (e.g., for NLP, NLU, or NLG) that are not
inherently interpretable. Therefore, SARs cannot effectively
communicate and collaborate with humans on tasks with-
out explainability. This is troublesome when the robot fails,
or when the assistive application is critical, like healthcare
or medical applications. In this paper, we make two distinct
contributions towards explainable SARs: (1) we contribute
a complex cognitive model for incorporating user feedback,
and (2) we show a proof-of-concept on a real-life medication
case study. Our approach combines three components:
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1. Preference Reasoning: The robot considers what it knows
or can infer about the user’s preferences, and how these
affect possible actions.

2. Assistance: The robot interacts with the user and aids
them if deemed necessary.

3. Explanation: The robot explains its reasoning and vali-
dates its recommendation and conclusion with a user.

In this paper, we show the capabilities of a SAR with
knowledge-driven adaptive assistance. We start with a de-
tailed overview of the medication sorting task. We present
the approach and initial results, and conclude with future
work, discussion, and a reiteration of the contributions.

Task Description
We consider a SAR that provides social assistance in a med-
ication sorting task. In this task, a person organizes a set
of medications, vitamins, and other supplements. Each has
constraints, provided in the form of a prescription, doctor
recommendation, or personal preference. In the example we
use in this paper, there is a vitamin to be taken each morning
and a medication that needs to be taken prior to any physical
activity.

The role of the robot is to observe the person while they
are organizing the pills into a sorting grid, a device that has
compartments for each day of the week and multiple time of
day (see Figure 1). Our example uses a sorting grid for four
times in the day: morning, noon, evening, and bedtime.

Consider the scenario in which a person is to take a vi-
tamin each morning and then Levodopa before any physical
activity. The robot knows that the person has a physical ther-
apy appointment at 1pm on Wednesday and a dance class at
6pm on Friday. The person has a preference that Levodopa
is taken enough time before the activity for it to take effect.

After the person has placed one vitamin in the morning
compartment for each day, they begin to figure out where to
place some Levodopa. The person hesitates, and the robot
interjects with a suggestion:

Robot: Try placing a Levodopa pill in the morning on
Wednesday.

User: Why?



Robot: Levodopa needs to be taken before any physical
activity, and you have a physical therapy appoint-
ment at 1pm on Wednesday. Since you prefer to
take it a few hours before activity, you should take
it in the morning.

User: Oh, right. Thank you.

Alternatively, consider the case in which the person
prefers to take Levodopa closer to when the activity is to
occur. In this case, the robot would explain:

Robot: A Levodopa pill needs to be taken before any phys-
ical activity, and you have a physical therapy ap-
pointment at 1pm on Wednesday. Since you prefer
to take it immediately before activity, you should
take it in the afternoon.

While previous work demonstrated the robot adapting its
assistance based on how much assistance the person needed
(Wilson, Tickle-Degnen, and Scheutz 2020), the current
work looks at how the robot can reason about the person’s
preferences, thus adapting its assistance and explanation.

Approach
For the social robot to provide assistance and explanations to
the user, we propose an architecture consisting of Preference
Reasoning, Adaptive Assistance, and Explanation compo-
nents, as shown in Figure 2. The Adaptive Assistance com-
ponent uses updates in the task and social cues conveyed
by the user to generate a plan, which is used in determining
what action the robot is to take to assist the user. The plan
would be sent to the Explanation component, along with the
user preferences from the Preference Reasoning component,
to generate an explanation for the robot’s method of assis-
tance. Each component is functional individually, but full
integration is a work in progress

Preference Reasoning
In the context of pill sorting, user preferences can take two
forms: preferences about how to sort specific pills (e.g., take
Levodopa directly before an activity vs. several hours be-
fore) and preferences about the sorting task as a whole (e.g.,
sort all of one type of pill for the week vs. each day in order).
These preferences take the form:

Figure 1: An example of a sorting grid.

Figure 2: User preferences are sent to the Adaptive Assis-
tance and Explanation components. The Adaptive Assis-
tance component uses the preference in generating a plan
for completing the task, and the Explanation component uses
the preference and plan to explain the robot’s assistance.

(prefers user
(medicationBeforeActivityBy

medtype
distance))

and

(prefers user (sortOrder order))

respectively.
Note that all preferences use the prefers predicate and take

the user as the first argument. This representation allows us to gen-
erate preferences through both inference and user input. More im-
portantly, it allows us to use the preferences for further reasoning,
including in the Adaptive Assistance and Explanation components.

In the present work, we assume that preferences are given by
the user. This may be in the form of correcting the robot (e.g., ”No,
don’t put that pill in the morning. I want to take it in the afternoon”)
or stated out right (e.g., ”Let’s start by sorting the green pills.”).
However, such preferences can also be inferred. We are working
on integrating the Analogical Theory of Mind (AToM) (Rabkina
et al. 2017) model into the architecture to do so.

AToM is a computational cognitive model of the processes by
which people learn to reason about others’ preferences, goals, be-
liefs, desires, etc. (called theory of mind reasoning). It has suc-
cessfully modeled children’s learning in two developmental studies
(Rabkina et al. 2017; Rabkina, McFate, and Forbus 2018) and has
previously been used to recognize the goals and intentions of simu-
lated agents in multiagent interactions (Rabkina and Forbus 2019;
Rabkina et al. 2020).

We plan to use AToM because its reasoning is human-like, and
therefore easy for people to understand. Furthermore, AToM can
learn from just a handful of examples and can incorporate user
feedback to improve its reasoning on the fly.

Adaptive Assistance
The Adaptive Assistance component uses a Hint Engine to generate
an appropriate assistance to help the user complete the task (Wil-
son, Wransky, and Tierno 2018). The Hint Engine integrates infor-
mation from three models (need, assistance, and domain) to deter-
mine how and when the robot should assist (Wilson et al. 2019b).
The need model is used to infer how much assistance the person
needs based on progress in the task and social cues (e.g., verbal
requests, eye gaze patterns). The assistance model represents the
relations between the types of actions the user can take to complete
the task, the types of actions the robot can take to assist, and the
amount of assistance provided in any robot action.



The domain model represents the task that the user is performing
and is used to infer a plan, the actions the user can take to complete
the task. When information from the need model indicates that the
user has a sufficient level of need, the Hint Engine generates a plan
for completing the task. The first action in the plan indicates where
the robot should focus its assistance. Based on the action type and
how much assistance the user needs, the Hint Engine uses the as-
sistance model to determine the appropriate assistive action for the
robot to perform.

To generate a plan, the Hint Engine uses its domain model,
which is represented with a hierarchical task network (HTN) (Nau
et al. 1999). The HTN used for medication sorting is shown in Fig-
ure 3. At the top level, the user is working toward sorting the pills
for all of the medications. To complete the task, the user needs to
go through each medication, sorting the pills for each. For a given
medication, a user may go through the days of the week, adding
and removing pills as they go. If no mistakes have been made, the
user is just missing pills (leading to addPill actions). If a pill
has been placed at the wrong time of the day, then the action pair
removePill and addPill are included in the plan to indicate
the moving of a pill.

Figure 3: Hierarchical task network representing a medica-
tion sorting task. It assumes task is done by sorting all pills
of one medication before doing the next one. White boxes
are tasks, and shaded boxes are operators.

To determine whether there is a missing pill, an extra pill, or a
pill placed at a wrong time, the planner checks the preconditions
of the method, which includes the constraints defined for the given
medication. For example, each medication defines the maximum
number to be taken in a day. If the number of pills for that medica-
tion exceed the maximum, allowed, then the extraPill condi-
tion is satisfied.

We extend the precondition checks to also consider user pref-
erences. For example, a vitamin could be taken at any time, but a
user may prefer to take it in the morning. Similarly, a medication
like Levodopa might be taken before physical activity, and the user
may have preferences regarding how long before the activity. In
this case, there is a constraint of the form (beforeActivity
pill row col activity) that can be inferred with a rule
like the following:

(beforeActivity pill row col activity) <-
(activityAt activity rowX col)
(isa pill med)
(medicationBeforeActivityBy med

distance)
(difference rowX row distance)

In this example, the HTN represents blocks of time as they relate
to the sorting grid (i.e., morning, noon, etc.) and not specific times

in the day.

Explanation
The explanations are generated from an existing system (Gilpin,
Macbeth, and Florentine 2018; Gilpin 2020) that incorporates com-
monsense knowledge, rules, and constraint checking towards an
explanation of intended behavior. The Explanation Synthesizer
proceeds in 3 steps:

1. Parsing and aggregation: The input query is parsed for key con-
cepts. Those concepts are used as search terms in the common-
sense knowledge base. A list of facts (symbolic triples) is re-
turned.

2. Constraint Checking: Commonsense rules are triggered to gen-
erate new facts and evidence.

3. Synthesizing: Once all the facts are aggregated, an explanation
synthesizer constructs the most plausible chain of reasoning to-
wards an explanation.

For example, consider the query (pill onDate Friday)
which justifies that the user can take the pill on Friday. The query
is parsed and the key concepts are pill and Friday, which are
search terms for the commonsense knowledge base (KB). The KB
returns facts like (Friday IsA ’business day’). The re-
lation onDate is used as a constraint in the system.

The constraints are a combination of commonsense rules and
user preferences. These constraints are application dependent. In
the medication sorting domain, they are rules related to the require-
ments for each type of pill, as well as user preferences. For exam-
ple, the user may prefer to take pills in the morning, or users may be
instructed to ingest pills with meals or food. The facts are forward
chained against these rules to generate new facts and evidence.

After this process, there may be more than one plausible ex-
planation supporting the query. The explanation synthesizer starts
from the query and constructs a goal tree to satisfy the query
(Gilpin 2020). For this paper, we only examine one explanation.
Choosing the best explanation may be explored in future work.

Proof of Concept
To demonstrate our components adapting to and explaining with
user preferences, we consider the scenario in which the user has
already correctly placed all of their Vitamin D and is now working
to sort their Levodopa, which is to be taken before activity. The
user has two activities planned for the week, Wednesday at 1pm
and Friday at 8pm. The user just placed one Levodopa pill in the
space for Wednesday midday.

We assume that the user has a previously stated preference to
take Levodopa during time slot prior to an activity. When the user
misplaces the Levodopa, the Adaptive Assistance component rec-
ognizes that the user needs assistance and generates a plan to move
the Wednesday pill to an earlier time slot:

(planFor state8
((preference beforeActivity 1))
((removePill Levodopa 3 1)
(addPill Levodopa 3 0)
(addPill Levodopa 5 2)))

The first action, (removePill Levodopa 3 1), is used
along with an inference of a level of assistance to determine that the
robot should provide direct assistance, which has the robot clearly
stating what should be done next. In this case, the pill needs to be
removed and the robot would say “Try removing a Levodopa from
Wednesday”.



Additionally, the Adaptive Assistance component considers al-
ternative plans, a counterfactual reasoning over different prefer-
ences. The alternative plans do not affect how the robot assists but
would be sent to the Explanation component. An alternative plan
for taking Levodopa at the same time as the activity is shown be-
low. The plan indicates that the Wednesday pill is in the correct
location and the only action remaining is to place the Friday pill:

(alternativePlanFor state8
((preference beforeActivity 0))
((addPill Levodopa 5 3)))

Finally, the user can inquire about the robot’s actions. For exam-
ple, the user can ask why the robot said to “Try removing a Lev-
odopa from Wednesday.” This question is parsed into an intermedi-
ate representation: (onDate Levodopa Wednesday), which
is passed to the Explanation Synthesizer along with the associated
preference; the user prefers to take the medication before an ac-
tivity. The following is a trace of the reasoning of the Explanation
Synthesizer

[(IsA Levodopa pill), 'Given']
[(AtLocation pill cabinet), 'ConceptNet']
...
[(IsA Wednesday weekday), 'ConceptNet']
[(IsA Wednesday day), 'ConceptNet']
...
[(prefers user (before pill activity)),

'Given preference']
[(IsA appt activity), 'Given knowledge']
[(atTime appt '1pm'), 'calendar']
[(onDay appt Wednesday), 'calendar']
[(atTime appt afternoon), 'Rule fired']

The justification is that (onDay pill Wednesday)
(beforeTime pill afternoon). And the final expla-
nation reads in a series of symbolic triples: (prefers user
(before pill activity)) (IsA user activity)
(atTime appt ’1pm’) (onDay appt Wednesday)
(IsA ’1pm’ afternoon).

Future Work
The work we describe here sets the foundation for a whole line of
work in designing social robots to adapt to users, adhere to user
preferences, and provide explanations. The most immediate next
step is to build upon the proof of concept we have demonstrated
here by integrating the individual parts and evaluating the system
on more complex scenarios.

Once we have a fully integrated system, the critical next step is
to incorporate feedback from the user. One of the greatest advan-
tages of taking a knowledge-driven approach is that the entire sys-
tem is inspectable, which will facilitate integrating the user feed-
back. The user may provide feedback after the robot provides an
explanation to the user. An explanation synthesizer extracts key
terms from the feedback, interprets the feedback, and determines
which component(s) need adjustment. The explanation synthesizer
also validates its conclusion by verifying with the user.

In this ongoing work, if the explanation synthesizer identifies
that the feedback is related to the user preferences, the Preference
Reasoner will construct a new case that is used by AToM to update
the model of the user. Even a single piece of feedback from the user
can be sufficient for AToM to learn the user’s preferences because
analogical learning, which is used by AToM, is data efficient and
capable of learning from only a few examples (Chen et al. 2019;
Wilson et al. 2019a).

Related Work
Consideration of user preferences is an important aspect of human-
robot interaction, as it allows the robot to modify its behaviors
according to its understanding of the user. Hiatt, Harrison, and
Trafton (2011) found that people prefer collaborating with robots
that adapt their behaviors in this way. However, most approaches to
recognizing users’ preferences use statistical techniques like rein-
forcement learning (Woodworth et al. 2018) and Markov Decision
Processes (Munzer, Toussaint, and Lopes 2017) to predict prefer-
ences. This means that they require large amounts of training data,
are not responsive to user feedback, and are not explainable. That
is, once trained, such systems predict preferences based on their
built-up statistical models; a user cannot state a preference directly
or inspect why the robot predicts a particular preference. By in-
corporating stated user preferences, and moving toward learning
preferences by analogy, we attempt to avoid these pitfalls.

There are many forms of adaptive assistance in robotics. One
approach is shared autonomy, in which the system infers human
intentions and adapts how much assistance in provided in con-
trolling a robot (Nikolaidis et al. 2017; Jain and Argall 2019).
This work is focused on assisting people in physically controlling
robots, whereas we are working towards an autonomous robot that
provides social assistance.

Other work has looked at adapting a robot’s behavior based on
user preferences. For example, a recursive neural network was used
to learn weights pertaining to user preferences, which influence the
plans for a robot (Bacciu et al. 2014). While the preferences did
affect the plans used by a robot, the plans are used to improve the
robot’s navigation. Thus, the user preferences do not relate to as-
sistance provided to the user.

A model of Theory of Mind (ToM) has been proposed to adapt
the assistance provided by a social robot (Görür, Rosman, and
Hoffman 2017). A stochastic model is used to infer what action
a person could be executing. Based on this estimate, they generate
a plan to determine with which action the robot should help. While
they use ToM to estimate a user’s intent (via a set of possible ac-
tions), they do not represent a user’s preference for how the task
should be completed.

One way to understand complex decision making systems is
with interpretable or explainable parts. Explanations can describe
proxy methods (Ribeiro, Singh, and Guestrin 2016; Selvaraju et al.
2016; Zeiler and Fergus 2014), representations (Bau et al. 2017;
Kim et al. 2017), or be inherently explanation-producing (Park et
al. 2018). In the context of human-robot interaction, explanations
can help to communicate and build trust (Wang, Pynadath, and Hill
2016), justify the robot’s actions (Stange and Kopp 2020) or mo-
tions (Dragan, Lee, and Srinivasa 2013), or describe unreasonable
perceptions (Gilpin et al. 2018). But most of these explanations are
generated after-the-fact and cannot be used to improve the comple-
tion of tasks moving forward.

We propose to use explanations as feedback to augment assistive
robots. This has been explored for agents playing games, especially
when to provide explanations (Li et al. 2020). This approach builds
on Rainbow, a self-adaptive system that can correct itself and reuse
the same baseline framework (Garlan et al. 2004). To our knowl-
edge, this is the first work to propose a knowledge-driven architec-
ture that could use explanations to improve robotic reasoning and
inference.

Contributions
In this paper, we motivate a knowledge-driven architecture for
adaptive assistance. We demonstrate the functionality of the com-
ponents of this architecture in a task for socially assistive robots



(SARs). In future work, we will expand the architecture to incor-
porate and process feedback and learn user preferences. This paper
opens a new area of research in adaptable and interpretable SARs.
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