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Abstract

Mobile manipulators can be used for machine tending and
material handling tasks in small volume manufacturing ap-
plications. These applications usually have semi-structured
work environment. The use of a fully autonomous mobile ma-
nipulator for such applications can be risky, as an inaccurate
model of the workspace may result in damage to expensive
equipment. On the other hand, the use of a fully teleoper-
ated mobile manipulator may require a significant amount of
operator time. In this paper, a semi-autonomous mobile ma-
nipulator is developed for safely and efficiently carrying out
machine tending tasks under human supervision. The robot is
capable of generating motion plans from the high-level task
description and presenting simulation results to the human for
approval. The human operator can authorize the robot to ex-
ecute the automatically generated plan or provide additional
input to the planner to refine the plan. If the level of uncer-
tainty in some parts of the workspace model is high, then the
human can decide to perform teleportation to safely execute
the task. Our preliminary user trials show that non-expert op-
erators can quickly learn to use the system and perform ma-
chine tending tasks.

Introduction
In large volume manufacturing, material handling is highly
automated using conveyor belts, automated guided vehicles
(AGVs), and large industrial robotic arms. This equipment
can be expensive and largely inflexible in terms of han-
dling process uncertainty, and thus have limited utility in
small-volume, batch manufacturing. For such environments,
the majority of material handling is largely handled by hu-
mans (Rey et al. 2019). Full automation may be infeasible
given the shortness of the production runs and the high fre-
quency of manufactured part turnover.

Robotic manipulators may provide such flexibility
through the use of tool changers and multi-purpose tooling.
With the increased focus on computer-numerical-controlled
(CNC) machine tools and additive manufacturing tech-
nologies, machine tending operations would require dedi-
cated robots for inserting, manipulating, and removing parts.
However, having a fixed manipulator for every machine is
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Figure 1: The ADAMMS (Agile Dexterous Autonomous
Mobile Manipulation System, (Annem et al. 2019)) mobile
manipulator system doing a machine tending task.

expensive, and not economically viable since the manipula-
tor would be idle for a significant portion of the manufac-
turing process. As such, a more flexible and versatile sys-
tem would be needed for flexible machine tending in small-
volume applications.

One such system is a mobile manipulator, which is a
robotic manipulator integrated onto a mobile platform, fre-
quently with integrated vision and tooling systems. The
mobility enhances the operational capabilities and the effi-
ciency of the manipulator, and the ability to physically in-
teract with the environment expands the versatility of the
mobile platform. More importantly, the juxtaposition of mo-
bility and manipulation enables cost-efficient operations, as
a single robotic system can now tend to multiple machine
tools and minimize idle time.



Many different types of mobile manipulators have been
developed (Hamner et al. 2010; Thakar et al. 2018; Katz
et al. 2006; Dömel et al. 2017; Srinivasa et al. 2012;
Annem et al. 2019; Hernandez, Nuno, and Alanis 2016;
Thakar et al. 2019a). The operational capabilities of these
systems range from being exclusively teleoperated, to fully
autonomous. Pure teleoperation implies that the operator has
control over both individual joints of the manipulator, and
the forward and backward velocities of the mobile base.
Such operation gives the operator complete control over the
entire robot in an environment with expensive machines,
which is highly desirable. However, teleoperating such a
system can be tedious as the motions of a manipulator on
the joint level are non-intuitive for humans. Further, Carte-
sian space teleoperation of the manipulator and its gripper
may result in unrealistic joint configurations, in terms of col-
lisions or singularities.

Fully autonomous operations of mobile manipulators may
also be applied to machine tending tasks (Thakar et al.
2019b; 2020a; Rajendran et al. 2020; 2019b). Here, the oper-
ator provides only the task goals, and the robot plans the tra-
jectory for the mobile base and the manipulator as well as the
grasping for the object using artificial intelligence (AI) tech-
nologies (Thakar et al. 2020b; Rajendran, Thakar, and Gupta
2019; Kumbla et al. 2017; 2018; Kabir et al. 2019b; 2020;
Colombo et al. 2019). However, such operations can be risky
in the presence of sensing uncertainty. It may not be feasible
to build a high fidelity model of the environment in semi-
structured environments. An inaccurate model of the envi-
ronment may result in collision and damage to expensive
equipment resulting. Hence, completely autonomous opera-
tions may not be desirable.

Teleoperation mode provides safety in terms of collision
with expensive equipment, and the autonomous model is ef-
ficient as the operator does not make low-level decisions
for the system. This paper introduces a human-supervised,
semi-autonomous, mobile manipulation system for machine
tending operations. A hybrid operation mode is developed in
which teleoperation and autonomous motions are combined.
For such a system, a remote operator only provides a set
of high-level instructions in each individual task. The robot
autonomously plans motions for executing these tasks and
shows a simulation of plan execution to the operator, who
can then chose to execute or discard the motion plans. More-
over, the remote operator can also monitor the motions being
executed and stop if a collision is likely to occur. Further-
more, if the autonomous operation is infeasible, the operator
can take complete control of the robot and still complete the
task in teleoperation mode. As automation in manufacturing
applications continues to increase, human operator support
of the equipment is expected to become increasingly remote
due to spatial, logistical, and safety constraints. For this rea-
son, the intended purpose is to develop a system to enable
a single operator to support multiple platforms distributed
throughout a facility through a semi-autonomous operation.

This paper presents system requirements for a mobile ma-
nipulator robot to perform machine tending tasks in small
volume manufacturing applications based on exploratory
user trials. The system architecture and platform design to

meet the identified requirements are also discussed. Eval-
uation of new features of the system is presented through
preliminary experimentation.

Related Work
There have been several works on human-assisted opera-
tion and teleoperation of robots for the execution of vari-
ous kind of tasks (Rosen et al. 2018; Orekhov et al. 2016;
Malysz and Sirouspour 2013; Kim et al. 2014; Ferraguti et
al. 2015; Saeidi et al. 2016; Al-Hussaini et al. 2019; 2020;
Burrell et al. 2018; Isop et al. 2019). Complete teleopera-
tion (i.e., joint level control using haptics) is typically found
in surgical robots (Koh et al. 2018) where total control of
the robot by human is of prime importance. Complete au-
tonomous operations are typically found in large warehouses
where there is order maintained (D’Andrea 2012). Such op-
erations can assist humans by reducing their workload from
mundane tasks. Teleoperation of mobile manipulators has
been studied in (Garcia, Rojas, and Pirri 2019), where obsta-
cle avoidance and manipulator dexterity are taken into con-
sideration by exploiting the system redundancy to make the
human operation more intuitive and safe.

Controlling a high degree of freedom systems like manip-
ulators using teleoperation is challenging. The focus of such
operation is typically to manipulate objects or move the end-
effector in certain desired ways, which can be achieved via
multiple joint configurations. However, moving each joint
manually to achieve a certain end-effector position and ori-
entation is non-intuitive. A graphical user interface (GUI)
has been presented for positioning, orienting, and actuating
a gripper on a manipulator to interact with surrounding ob-
jects in (Kent, Saldanha, and Chernova 2017).

Haptic feedback can be used for intuitive teleoperation of
mobile robots and mobile manipulators (Masone et al. 2018;
Saeidi, Wagner, and Wang 2017; Wrock and Nokleby 2017).
This enhances human capabilities since human intelligence
can be easily transferred to robots. Haptic based feedback
and control can be integrated with semi-autonomous teleop-
eration as well like in (Lui et al. 2017). Here, the humans
provide instructions for the motion of the two robots us-
ing a haptic feedback control device. Whereas, autonomy is
used to maintain the nonholonomic constraints of two mo-
bile robots cooperating in a transportation task. This is nec-
essary as maintaining nonholonomic constraints during such
complex tasks is challenging for humans. Both virtual reality
and haptic feedback have been used for robot teleoperation
(Yashin et al. 2019).

Teleoperation for mobile manipulators has been stud-
ied in (Santiago, Slawinski, and Mut 2019), where con-
trol algorithms inspired by human interaction are developed
so that the resulting teleoperation is intuitive and easy to
use. In prior work on semi-autonomous mobile manipu-
lation (Annem et al. 2019), a mobile manipulator system
called ADAMMS (Agile Dexterous Autonomous Mobile
Manipulation System, see Fig. 1) was developed. Limita-
tions of this system are discussed in the next section.

For evaluation purposes, many studies have relied on the
time-to-completion (i.e., measuring the time elapsed be-
tween the operator starting and completing the task) measure



as a qualitative measure for inferring system usability. Such
times can also be systematically compared as a function of
trial repetitions to estimate system learnability. The assess-
ment of mental effort using the NASA Task Load Index
(NASA-TLX) (Hart and Staveland 1988) is a widely used
tool to measure human performance and mental effort (An-
nem et al. 2019). In (Steinfeld et al. 2006), several metrics
of human-robot interaction (HRI) in response robot appli-
cations are identified that can be leveraged for comprehen-
sive evaluations across a wide range of tasks and systems.
In industry, standardized resources such as the International
Organization of Standardization (ISO) ISO 25010 (ISO/IEC
25010:2011 2011) are used to evaluate software systems and
the operator’s response to the interface based on a number of
qualitative metrics.

System Requirements Development
Exploratory experiments were conducted with the
ADAMMS 1.0 system to assess safety and efficiency
issues with the first prototype (Annem et al. 2019). The
operators were asked to complete machine tending tasks
as efficiently as possible without compromising safety.
The operators pointed out the following shortcomings after
conducting these exploratory experiments:

1. A fixed depth camera mounted on the mobile base made
it difficult for operators to quickly gain situational aware-
ness for safely performing the machine tending task.

2. The discrete number of grasping directions made the
grasping task time-consuming and non-intuitive. The ab-
sence of predictive collision avoidance forced the opera-
tor to move in a very cautious manner. This further slowed
down progress on the manipulation task.

3. Operators found it challenging to position the gripper at
the desired pose using the goal configuration of the ma-
nipulator. This led to slow progress on the manipulation
task.

4. Operators found it difficult to select and specify way-
points for specifying the grasping motion for the manipu-
lator. This resulted in increased time delays.

5. Operators felt that the automatically generated mobile
base plans were not safe because the resulting base mo-
tions were very close to the obstacles. Even small changes
in the map resulted in collisions.

6. The platform did not detect and avoid dynamic obstacles,
i.e., people or chairs, which were not there in the recorded
map. This led to safety concerns during run time.

7. The mobile base planner did not use turn-in-place moves
and instead relied on arc motions to make turns. This led
to inefficient plans and task execution.

8. Operators reported that it was difficult to verify the safety
of generated motion plans for the mobile base.

The following requirements for ADAMMS 2.0 were de-
veloped based on the above observations:

1. Use the arm to pan the depth camera to capture all the rel-
evant features of the workspace to perform the manipula-
tion task. In addition, incorporate a second color camera
on the arm to show the gripper to the operator.

2. Enable the operator to select a grasping direction of their
choice and use predictive collision detection to report po-
tential safety violations with the operator-selected grasp-
ing strategy.

3. Enable the operator to position the gripper by selecting the
gripper pose and automatically compute the manipulator
configuration to realize the desired gripper pose.

4. Enable the manual motion of the gripper based on live
camera feed for grasping and check for collisions before
implementing the manual motions.

5. Automatically generate mobile base plans that maintain
safe distances from the obstacles.

6. Detect dynamic obstacles and avoid collision with them.

7. Incorporate in-place rotation actions during mobile base
planning.

8. Provide operators situational awareness to verify the
safety of the mobile base motion plans.

This paper presents system architecture and design to ad-
dress these requirements.

System Architecture
To address the requirements identified in the previous sec-
tion, the system was designed to find the best balance be-
tween reducing the task execution burden on human oper-
ators and ensuring operator safety in the presence of high
uncertainty. The architecture for the software system is illus-
trated in Fig. 2. The AI technology is used both for automat-
ing task execution (when possible) and providing informa-
tion to humans to make risk-informed decisions to accept,
refine, or abandon system-generated plans. The human op-
erator has access to the environment model generated by the
perception system. The human operator tasks the system by
providing task goals. These tasks could be either to scan the
environment or manipulate an object. The system automati-
cally generates a plan to execute the given task. The system
uses a plan simulator to provide the operator with a mixed
reality plan visualization.

The system also computes the plan execution risk based
on the uncertainty in the environment model. Uncertainty
estimate are generated by performing multiple scans of the
environment from many different camera poses. This data
is fused together and spatial discrepancy in the fused data
is used to estimate the uncertainty in the model built by the
system. If the operator is satisfied with the plan, then the op-
erator can authorize the controller to execute the plan. Con-
versely, if the operator is not satisfied with the plan, then the
operator can offer hints to the planner by giving intermediate
motion goals. The planner can generate new plans based on
this additional information, and the plan’s visualization and
risks are presented to the operator. This process is continued
until the operator is satisfied with the plan.



Figure 2: The architecture of the AI-HRI system for the mobile manipulator

If the operator believes that the system is unable to gen-
erate an appropriate plan, then they can abandon the system
generated plan, and command the robot’s motions using tele-
operation.

Mobile Manipulator Platform Description
The ADAMMS 2.0 system consists of a differential drive
mobile robot, with a Universal Robots UR5 robotic manipu-
lator physically mounted on the chassis. The manipulator is
augmented with a Robotiq 2-fingered gripper attached to the
tool flange. A multi-sensor suite is used to monitor the work
volume, and consists of multiple depth cameras attached to
both the mobile base and the manipulator, color cameras, a
Lidar (light detection and ranging) area scanner, a 9 degrees-
of-freedom inertial measurement unit (IMU), and encoders
on the mobile base’s wheels.

As shown in Fig. 3, the mobile manipulator system
consists of three actuators, mobile base, manipulator, and
gripper. The sensors are listed on the right. Compared to
ADAMMS in (Annem et al. 2019), there are additional sen-
sors for accurate localization of the mobile base with addi-
tion of an IMU and a lidar. These help in reducing the lo-
calization error and detecting dynamic obstacles in the local
map. For localization of the mobile base, RTAB-Map (Labbé
and Michaud 2019) was used in ROS to take advantage of
sensor data from the Kinect and 2D Lidar for mapping and
localization. The Kinect has 3D depth data, but this data
is subject to significant measurement uncertainty. In con-
trast, the 2D Lidar provides a more accurate and larger range
of depth data. By fusing data from both sensors, both bet-
ter mapping of the environment and robust feature detec-
tion can be achieved. Also, improved odometry estimates

are provided as inputs to RTAB-Map by incorporating data
from wheel encoders and an onboard IMU using an extended
Kalman filter. The complete sensor setup for RTAB-Map is
as shown in Fig. 4.

The camera (in green) at the end-effector in Fig. 3(a)
is used to give the operator a view of the gripper fingers
during grasping. The Intel Realsense camera also shown in
Fig. 3(a), on the end-effector is used to generate point cloud
of the scene on demand. Using the depth camera for both the
purposes is not desirable as having the gripper fingers in the
view includes them in the point cloud. Also, it is necessary
to have the gripper fingers in the view as it gives the operator
an intuition towards manual grasping.

Performing Machine Tending Task with
ADAMMS 2.0

In this section, the different features that have been intro-
duced are discussed in the context of supporting machine
tending tasks. Fig. 5 shows the home page of the graphi-
cal interface used by the operator. The left side of the home
screen includes major functionalities like enabling the robot
and emergency stop buttons, and status of different sensors
on the robot. The right side is used to select a control mode
from the five different options. Base control and arm con-
trol modes provide the control panel for the motion of the
base and the arm, respectively. The Arm Scan definitions
option, in the panel is used to generate scanning profiles of-
fline. These profiles are later selected by the operator while
tasking robot to perform scanning operation of the scene
(see Fig. 8). Similar to scanning, grasp definitions allows
the user to generate various grasp configuration which can



Figure 3: Hardware components of ADAMMS 2.0. (a) The
gripper has been mounted with a camera and Intel Realsense
camera (b) wide angle cameras mounted on the robot to un-
derstand the environment better (c) IMU for localization (d)
kinect for mapping and localization (e) laser scanner for lo-
calization (f) wheel encoders for odometry

Figure 4: A simplified ROS message diagram for localiza-
tion and mapping of mobile base

later be used online. Finally, the visualization control mode
allows the operator to switch between different sensor feeds
while operating the platform. We will use a mock-up of a
3D printer to illustrate machine tending task by ADAMMS
2.0 using this interface.

Mobile Base Motion Towards the Machine
The mobile base moves from the starting location to an oper-
ator set goal location as the desired position and orientation
of the mobile base. A GUI for HRI is used with the AI as-
pect of it being the motion planning for the mobile base.
A mobile robot motion planning package in ROS called
move base is used for planning. Here, the time-elastic bands
(TEB) (Rösmann, Hoffmann, and Bertram 2017) planner is
used for local planning. In TEB, the optimal trajectory is
efficiently obtained by solving a sparse scalarized multi-
objective optimization problem. We adjust the weights of
different objectives to produce the desired behavior in case
of conflicting objectives. Since local planners such as TEB

often get stuck in a locally optimal trajectory depending on
the initial seed, a subset of admissible trajectories in dif-
ferent homotopy classes is optimized in parallel. The local
planner is able to switch to the current globally optimal tra-
jectory among the candidate set. For local planning, it uses a
real-time map generated using the lidar and plans the path in
real-time. The GUI also provides a stop button that the op-
erator can utilize to manually move the robot once the robot
comes close to the goal. Further, the manual motion also
helps in fine-tuning the pose of the mobile robot near the 3D
printer. The TEB planner used as compared to the Dynamic-
Window Approach used in (Annem et al. 2019) provides a
much stable trajectory with multiple parameters to be set by
the operator.

Manipulator Motions for Grasping
After the mobile base reaches an operator-defined location
near the machine, the manipulator initiates motion for grasp-
ing the part. The Automated Arm Control Panel of the inter-
face is used for scanning and grasping operation, as depicted
in Fig. 6.

The first step is to capture a point cloud of the 3D printer
and the surroundings. An Intel Realsense mounted on the
gripper is used to capture a point cloud of the environment
to produce a 3D model of the scene. The gripper movement
is planned to capture multiple point clouds and stitch them
together to reconstruct the scene, as shown in Fig. 7. The
interface provides few pre-defined scanning profiles for this
scanning process; some examples are shown in Fig. 8. The
operator can readily choose from these options. Once a pro-
file is selected, the system auto-generates the manipulator’s
trajectory using a path-constrained motion planner (Kabir
et al. 2019a) such that the camera moves to go through the
waypoints, capture and stitch the pointclouds. Each profile
is generated using a mesh model which allows the user the
flexibility to import any shape of mesh and generate a scan-
ning profile.

The quality of the reconstructed scene by stitching point
clouds from Realsense camera is important since it is used to
perform grasping of objects. We perform multiple measure-
ments of the stitched point cloud by using different sets of
waypoints of the manipulator, and we analyze them to gen-
erate an uncertainty estimate of the 3D reconstructed scene.
This way, we construct a single point cloud of the scene,
where each point has an expected location, and a standard
deviation error along the estimated surface normal direction.
It gives humans insight on the level of uncertainty in differ-
ent regions of the scene. If the uncertainty is above a certain
threshold around the object of interest, the system can alert
the human operator to use caution.

Once the model of the machine and the nearby environ-
ment is reconstructed with reasonable quality, the next task
is to grasp the part. For this purpose, the operator can set
a pre-grasp pose for the gripper. First, the operator selects
a grasp position in the pointcloud after identifying the ob-
ject to grasp. For rapid operation, a suitable grasping pose
can be selected from a list of pre-generated grasp profiles, as
shown in Fig. 9. After that, the operator can further fine-tune
the gripper configuration by using the jogging functionality,



Figure 5: The home screen of the graphical operator interface for machine tending tasks using ADAMMS 2.0. The left panel
has the common control used for enabling and stopping the robot, as well as a status panel showing the state of all the sensors
on-board. The right side of the panel shows different control screens which user can access.

Figure 6: The interface showing the Automated Arm Con-
trol Panel used for scanning and grasping operation. The
user can enable one of the modes at a time, and select a
pre-defeined scanning, grasping, retract profile to rapidly
provide high-level input to low level planning algorithms to
generate robot motions.

and finalise the grasp pose.
After the pre-grasp pose of the gripper is chosen, a finite

number of distinct inverse kinematic (IK) solutions are gen-
erated for the manipulator. Solutions are sorted based on the
distance from the current configuration so that the first solu-
tion is usually the best solution. However, the operator can
choose a solution other than the first one to give more flex-
ibility. Each of these solutions can be visualized for colli-
sions. As shown in Fig. 10, if the solution is neither in col-
lision with the robot itself nor the environment, the robot
is visualized in green (left). Otherwise, the robot turns red

Figure 7: An of scene scanning using automatically gen-
erated robot trajectory for a selected scanning profile. The
robot takes pointcloud data at each waypoint (magenta
color) on the path (green color) and filters and stitches it
to generate the scene model.

(right). A pre-grasp configuration of the manipulator once
set, is achieved using motion planning. Motion planning
of a high degree of freedom systems like manipulators is
challenging due to high dimensional state space in which a
search has to be performed to reach from the starting config-
uration to the goal configuration. Based on the point cloud
data of the system’s surroundings, planning for such motion
is one application for which AI is leveraged to assist the hu-
man operator. For such motion planning queries, we have
used a point-to-point planner (Kabir, Shah, and Gupta 2018;
Rajendran et al. 2019a) which generates a smooth robot tra-
jectory from the current robot configuration to grasp con-
figuration. This particular planner was developed to gener-
ate deterministic low-cost robot trajectory in confined work
spaces which suits well for machine tending operations. The
operator can observe the planned trajectory before executing
it with the real robot. The operator can choose to execute the



Figure 8: The figure shows few types of pre-defined scan-
ning profiles that can be used by the user to scan the scene.
These scanning profile are generated beforehand, and the op-
erator just need to select a profile during operation of the
robot. The current architecture auto generates the camera-
path (shown in green) using a developed planner and any
mesh profile. This eliminates the need of teaching robot
scanning positions.

Figure 9: An example of setting the pre-grasp pose. The
grasping pose is selected from the offline generated grasping
profile repository and altered for grasping a particular object
online. This allows the user to rapidly operate the robot, and
not use gripper jogging controls to decide grasp configs for
grasping each object.

trajectory or plan another one.
After reaching the pre-grasp configuration, the operator

can manually move the gripper in its coordinate frame to
fine-tune and reach the part. Visual feedback is provided by
the 3D rotatable UI and the camera at the end-effector. The
GUI has buttons to move linearly forward, backward, right,
left, up, or down in the tool frame. Since the motions to fine-
tune are small, such end-effector motions are feasible. More-
over, once a button for any direction is clicked, the motion
is verified to be collision-free and then executed. This en-
sures the safety of the robot and the 3D printer. After the
grasping is done, the manipulator needs to be bought to the
initial configuration so that the mobile base motion can be
resumed. For this, use OMPL for motion planning as before.
However, care must be taken to ensure that the part does
not collide with the other objects in the workspace when the
manipulator is in motion. For this, a collision sphere is used,
which engulfs the entire part.

Mobile Base Motion Towards the Goal
Once the grasping has been done, and the manipulator has
retracted towards its initial position, the mobile base can
move towards the goal location, where the part needs to
be transported. The operator provides the same commands
as discussed previously. Similarly, the drop functionality is

Figure 10: Visualization of the selected IK solution and it’s
collision checking result

achieved using the aforementioned tools for moving the ma-
nipulator and opening the gripper.

Experiments and Results
Comparison with ADAMMS 1.0
The first modification is mounting a depth camera on the
end-effector of the manipulator and capturing a point cloud
from operator set angles. This results in a denser point cloud,
compared to using a fixed depth camera on the mobile base.

The next modifications required the operator to have flex-
ibility in determining how the gripper will approach for
grasping an object. The operator can select and adjust the
pre-grasping pose of the gripper, and a set of inverse kine-
matic solutions is provide for the operator-set gripper pose.
Here, multiple types of objects can be grasped with the cor-
responding collision-free inverse kinematic solutions.

The manipulator is moved manually for grasping after
reaching the operator set pre-grasping configuration. How-
ever, making sure that these manual motions are collision-
free before executing them is critical since it can be difficult
for the operator to perceive from the camera views and the
interface. If the manual jogging motion may result in a col-
lision, the system ceases the motion beforehand, and gives
collision warning to the operator.

The next requirement was to make sure that the mobile
base avoids collisions due to small changes in the map.
Once the environment is mapped, this map can be used so
long as there are no significant changes to the environment;
however, small displacements of tables, chairs need to be
taken into account. The TEB planner is based on optimiza-
tion where the center of a passage for the path is a local
minimum. It generates paths, as shown in Fig. 11(b) in red,
which passes near the center of the passages. Moreover, two
wide-angle cameras can be used to monitor any obstacle.
Furthermore, the operator has an option to stop the motion
generated by the planner and use these wide-angle cameras
to find the way around obstacles. The wide-angle cameras
also provide the operator the required situational awareness.

For avoiding dynamic obstacles, in (Annem et al. 2019),
a Lidar would stop the motion of the mobile base if a
previously-unmapped obstacle was detected in its way. The
operator would have to manually move the robot, or provide
a goal point again after the dynamic obstacle had moved. In



Figure 11: (a) The wide angle camera viewing the left (c)
and right of the mobile base respectively. (b) The mobile
base local path in red. It can be seen that this path is near the
center of the passage.

this work, a local TEB planner is used, which uses the Li-
dar information to modify the existing path after detecting
a dynamic obstacle. This greatly reduces the operation time
and the burden on the operator to move the mobile base. The
path in red in Fig. 11(b) is one such local path.

Figure 12: The mobile base rotating in place.

The final requirement was that the mobile base planner
should allow for rotation in place, which is necessary, espe-
cially in narrow passages (Fig. 12). This is possible due to
the parameters in TEB, which can be set for the minimum
radius of turning. This greatly enhances the motion capabil-
ities of the platform as compared to in (Annem et al. 2019).

Initial User Trials
First-level trials were conducted with 6 volunteers taken
from the pool of people working at our lab. These volunteers
all have some experience with robotic systems. Amongst
these volunteers, 2 were female graduate students (mean age
∼30) with an engineering background, but limited robotics
experience. The remaining 4 participants were male gradu-
ate students in engineering with 2 (mean age ∼25) having
significant experience with robots, and 2 (mean age ∼27)
with limited robotics experience.

A metric was defined to measure the ease of use of the
system based on the time taken by a new operator to com-
plete the task as compared to an expert operator. This metric
is inversely proportional to the difference between the time
taken by a trial operator and the expert operator to complete
the same task. Here, for a particular task since the time taken
by the robot to move is similar for the expert and trial oper-
ators, the time difference measures the effort a new operator
has to put in to understand the GUI and operate the system.

All the operators attempt the same task of guiding the
robot to a 3D printer placed in the lab and retrieving a part.
The expert operator took 14 minutes to complete this par-
ticular task. Without any prior training, the average time
taken by the other operators was 24 minutes. In the second
attempt, after having limited experience with operating the
system, the operators took on average 18 minutes to com-
plete the task. This shows that the usability of the system

significantly increases with the experience of operating the
system. The main reason for this change was gaining a better
understanding of the GUI and robot capabilities.

There were two important decision-making factors that
were observed to have significantly reduced the task com-
pletion time. The first factor was having a better insight into
where to place the mobile base so that manipulator can reach
to grasp the part. For a new operator, without an intuition of
the reachability of the mobile manipulator, it took longer to
complete the task as compared to an experienced operator.
The second factor was that for a new operator, understand-
ing whether the part is within the gripper fingers is time-
consuming as he/she has to go back into the 3D view to ob-
serve the gripper location after each manual motion. With
experience, the operator could precisely grasp the object by
manual motion. This rudimentary operator trials resulted in
an overall positive feedback for changes made to the system.

Conclusions & Future Work
This paper presents the ADAMMS 2.0 mobile manipulation
system for performing machine tending tasks in a safe and
efficient manner. In the prior work, a preliminary version
of this system was presented with operator trials, and sev-
eral requirements were compiled based on the feedback re-
ceived. In this work, all of these requirements are addressed.
The use of AI enables automated motion planning from the
high-level task description. The AI is also leveraged to sim-
ulate plans and compute risks. These plans are presented to
the human operator. This enables humans to intervene when
collision risk is high due to the uncertainty in the environ-
ment model. The system design allows the human operator
to simply authorize the execution of automatically generated
plans when risk is low and perform teleoperation when the
risk is high. This design allows humans to archive opera-
tional efficiency without compromising safety.

Extensive operator trials are planned to gauge the ease of
use of the system. Scheduled wide-scale human trials for
this work were postponed due to the global COVID-19 pan-
demic. Based on the feedback from the limited operator tri-
als, the current plan integrates reachability maps to generate
areas where the mobile base should be located so that the
part is reachable for the manipulator, and the operator makes
quick decisions. Moreover, the work will be expanded to
handle different types of machines. Machines with doors re-
quire constrained manipulator motions as well as placement
of the mobile base so that such motion is possible. Further-
more, there is also a need to have special mounts on the grip-
per such that the door of the machines can be opened easily.
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