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Abstract
We describe Platform for Situated Intelligence, an open-
source framework for multimodal, integrative-AI systems.
The framework provides infrastructure, tools, and compo-
nents that enable and accelerate the development of applica-
tions that process multimodal streams of data and in which
timing is critical. The framework is particularly well-suited
for developing physically situated interactive systems that
perceive and reason about their surroundings in order to bet-
ter interact with people, such as social robots, virtual assis-
tants, smart meeting rooms, etc. In this paper, we provide a
brief, high-level overview of the framework and its main af-
fordances, and discuss its implications for HRI.

Introduction
Recent years have brought renewed excitement and inter-
est in the possibility of AI-infused robots that can interact
with people in the open world. Unfortunately, the barrier-
to-entry for conducting research in this space is still very
high, as anyone who has attempted to build such systems
can attest. Before reaching the interesting research and de-
sign challenges, one must often first overcome the daunting
engineering tasks involved in building end-to-end prototype
systems that serve as test-beds for experimentation. Due to
these challenges, and the large impedance mismatch with
respect to the generic software development infrastructures
and tools available today, it is not surprising that progress in
this area has been slow, despite advances in individual com-
ponent technologies.

The last decade has indeed yielded fast-paced progress
and significant breakthroughs in several individual areas of
AI and machine learning, from natural language processing
models that generate believable text in nearly any domain
(Brown et al. 2020), to computer vision systems for accu-
rate object detection and pose estimation (Girshick et al.
2018), and robot control algorithms for dexterous manipula-
tion (Andrychowicz et al. 2020). These breakthroughs have
been fueled in part by large datasets, increased computing
power, new techniques for faster training of deep-learned
models, and improvements in sim2real transfer (Kadian et
al. 2019). However, combining multiple such AI technolo-
gies into end-to-end intelligent systems remains very chal-
lenging and time-consuming today.

Robots that understand and interact with people in the
open world are a prime example of a general class of
multimodal, integrative-AI systems. These systems need to
weave together and carefully orchestrate a heterogeneous
set of AI components and sensors which generate and pro-
cess data across different modalities, such as audio, video,
depth, speech, lidar, etc. Often they must operate under strict
latency constraints, and components must execute asyn-
chronously for efficiency reasons, yet they must also be
closely coordinated in real time and finely tuned in order to
create a well-functioning end-to-end system. Unfortunately,
the typical programming languages used in developing these
systems lack important primitives and features for reason-
ing about time and latency. Without support for operations
like synchronization and data fusion, a significant amount
of development time is spent debugging low-level problems,
rather than on the high-level tasks at hand. Researchers are
forced to constantly “reinvent the wheel,” building their own
custom infrastructure for representing and reasoning about
important timing constructs, which often ends up serving
only the needs of their specific application, hindering gen-
eralization and reuse.

Furthermore, multimodal, integrative-AI applications
have a specific set of debugging, visualization, and analyt-
ics needs that are not sufficiently addressed by the devel-
opment tools generally available today. Standard debugging
techniques such as the use of breakpoints in code or ad-hoc
“printf debugging” are insufficient. Instead, the ability to vi-
sualize the data as it actually flows through the application is
paramount. Formulating analyses and queries over the data
further accelerates the development and tuning process.

To address these challenges and alleviate the high en-
gineering costs, our team has developed Platform for Sit-
uated Intelligence1 (in short \psi, pronounced like the
Greek letter ψ), an open-source and extensible framework
to support more rapid development and research in mul-
timodal, integrative-AI systems, such as socially interac-
tive autonomous robots. The framework is intended to sim-
plify the development, debugging, analysis, maintenance,
and continuous evolution of such systems by empowering
rapid prototyping and iteration.

1https://github.com/microsoft/psi
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The development of \psi was motivated and informed by
our team’s experiences in the robotics space, as well as re-
search on how to create physically situated, multimodal in-
teractive systems that understand social context and fluidly
interact with groups of people (Bohus and Horvitz 2009;
Bohus and Horvitz 2011; Andrist et al. 2016; Bohus, An-
drist, and Horvitz 2017; Tan et al. 2020). This research has
involved the development of fully autonomous prototype
systems that are deployed in the open world for extended
periods, including robots that give directions to people in
our building (Bohus, Saw, and Horvitz 2014). Throughout
this research, as well as in our broader interactions with the
robotics, HRI, and multimodal interaction research commu-
nities, we have experienced and observed many of the chal-
lenges listed above. In the next section, we present a brief
high-level architectural overview of \psi. For the interested
reader, a longer in-depth description of the framework’s var-
ious affordances is available in (Bohus et al. 2020).

Overview
Platform for Situated Intelligence is comprised of three as-
pects: (1) the runtime infrastructure that provides support for
working with temporal streams of data, and a model for par-
allel coordinated computation; (2) a set of tools that enable
debugging, multimodal data visualization, annotation, and
processing; and (3) an open, growing ecosystem of compo-
nents that wrap various AI technologies and sensors.

At a high level, an application built with \psi can be bro-
ken down into a few basic concepts. A \psi application is
basically a graph, or pipeline, of nodes and edges. Each node
represents a component that encapsulates a specific AI tech-
nology, sensor, effector, or other unit of computation. Ex-
amples in the vision domain include components for pose
tracking, cameras, rendering an image to a screen, and im-
age cropping respectively. Each edge in the pipeline graph
represents a one-way stream of data messages of a particular
type. For example, the stream exiting a camera component
carries image messages. Streams of a specific type can only
be connected to components that receive the same data type.

Pipelines are easily constructed by instantiating compo-
nents and connecting them together with imperative code.
Once the pipeline is started, the \psi runtime controls its exe-
cution, and in the process provides a number of affordances.

Runtime Infrastructure
The \psi runtime infrastructure provides a programming and
execution model for parallel, coordinated computation based
on time-aware data streams. This infrastructure is built on
.NET Standard to be cross-platform. It retains the affor-
dances and software engineering benefits of a managed pro-
gramming language like C# (type safety, memory manage-
ment, etc.), while targeting the demanding performance re-
quirements of these applications.

Multimodal, integrative-AI applications are often ex-
tremely compute intensive and need to operate under strict
latency constraints in order to act in the world in real time.
The \psi runtime was designed to maximize resource utiliza-
tion via multi-threaded pipeline parallelism, while insulating

developers from the many challenges that often arise in con-
current execution environments. Automated data cloning en-
sures component isolation, and shared memory mechanisms
and other optimizations minimize garbage collections when
the pipeline is executing at a steady state.

Most interesting real-world systems will require a large
amount of heterogeneous components. The \psi framework
promotes a programming model where individual compo-
nents are lightweight and are easily wired together to accom-
plish larger computation tasks. This model, in which compo-
nents execute concurrently and in a coordinated way, enables
efficiency gains via pipeline parallelism.

A central aspect of the \psi streaming infrastructure is
that time is a first-order construct. All messages flowing on
streams carry not only a creation timestamp, but also an
originating timestamp which corresponds to the time when
that message entered the pipeline from the real world. This
timestamp is critical for proper synchronization and fusion
across streams. \psi provides a large set of primitives for
data synchronization and interpolation that a developer can
invoke and configure, while hiding underlying complexities
of concurrency, buffering, waiting for messages to arrive,
etc. The \psi runtime empowers developers to optimize their
pipelines with various fine-grained controls and throttling
mechanisms for regulating flow on data streams.

Another important feature of the \psi runtime is that it
helps speed up development by providing APIs for data
persistence and replay. \psi allows developers to easily log
streams of any data types to disk: the framework automati-
cally generates performant serializers. While incrementally
developing and debugging complex integrative applications,
it is often time consuming and expensive to have to repeat-
edly run the application “live.” The persistence system en-
ables developers to experiment with and execute pipelines
where the input streams are read from disk, rather than pro-
duced by live sensors. Because of the fine-grained timing
information logged in the data, pipeline executions can be
reproducible and deterministic.

Debugging and Visualization Tools
Platform for Situated Intelligence Studio, or PsiStudio (Fig-
ure 1), is a data visualization and processing tool for the tem-
poral, multimodal data generated by \psi applications. Users
can construct and reuse complex visualization layouts, and
they can easily navigate temporally through the data, inspect
values, and select and play-back segments at varying speeds.
The visualizations can be performed either offline, i.e., based
on the data persisted to disk by the application, or live, while
the application is running.

A wide array of configurable visualizers for different data
types are available, from simple numerical streams, to audio,
video, complex 3D objects, etc. A number of universal visu-
alizers that operate over streams of any type are also defined,
e.g., to visualize the latency or originating times of mes-
sages. These visualizers provide only a starting point. De-
velopers can write their own visualizers, configure the tool
to load them from external assemblies, and also use visual-
izers outside of PsiStudio, in their own applications.



Figure 1: Data visualized in Platform for Situated Intelligence Studio, from a \psi application that identifies objects that a user
is pointing to. The center panel shows a composite visualization layout that includes 3D, 2D, and timeline views.

Figure 1 shows data visualized in PsiStudio from a sam-
ple \psi application that attempts to identify the objects that
a user is pointing to. The top-left panel contains a 3D vi-
sualization, in which information from the depth map, body
tracking, pointing direction, and pointing target streams is
simultaneously shown. Next to it on the right, a 2D panel
visualizes a stream containing the cropped image around the
pointing target, as well as an overlaid visualizer showing the
object detection results. Below that are five timeline panels
showing (1) a boolean stream indicating when the user is
pointing, (2) an audio stream overlaid with a boolean voice
activity detection stream, (3) a log-energy stream, (4) speech
recognition results, and (5) a latency visualizer that pro-
vides information about the originating-time and latency of
each object detection result (this latter visualizer was config-
ured to show latencies larger than 500ms in orange). Finally,
the bottom row shows two histogram visualizers. PsiStudio
also enables developers to visualize the application pipeline
itself, which is often a critical ability in debugging data
synchronization and starvation problems, discovering which
components are causing slowdowns, etc. The developer can
visually inspect the structure of the pipeline they constructed
in code, with the various components and streams, and drill
down hierarchically into sub-components.

PsiStudio supports temporal data annotation scenarios
based on custom, user-defined annotation schemas. This is
an important capability for data-driven work, iterative re-
finement, and tuning. The annotated data is itself persisted
as a \psi stream, enabling a variety of semi-automatic data

labeling and training scenarios.
Finally, PsiStudio provides access to data processing

functionality. Multiple stores of data collected from the same
application over time can be organized hierarchically into
larger sessions and datasets. Exploratory analyses can be
performed and new streams can be computed from existing
data in batch mode, e.g., extracting acoustic features from
all audio streams in a dataset. This data processing function-
ality is additionally available via a command line tool.

Open Ecosystem of Components
Apart from the runtime infrastructure and tools described
above, the \psi framework also includes a set of components
which promote encapsulation and reuse, and provide the
basis for rapidly prototyping applications. The components
currently available in the GitHub repository center around
multimodal sensing and processing technologies. They in-
clude sensor components for USB cameras, microphones,
and depth sensors such as Microsoft’s Azure Kinect and In-
tel’s RealSense; audio and visual processing components for
speech recognition, language understanding, object detec-
tion, and body tracking; wrapper components, for instance
that enable running machine-learned models in ONNX for-
mat, or provide access to Azure Cognitive Services; etc.

Also included are a set of low-level, generic components
for manipulating data streams of any type, called stream
operators. An array of basic operators provide time-related
functionality, mathematical and statistical operations, aggre-
gation, windowing, etc. Large-scale integrative-AI applica-



tions often require compositing many heterogeneous com-
ponents, with input and output data types that may not align
well out-of-the-box. \psi includes operators for writing sim-
ple adapters that transform data into the proper shape when
interfacing between such components. Another important
category of stream operators facilitate stream fusion and
merging, and they provide the basis for reproducible, cor-
rect synchronization across streams. Still other operators en-
able the dynamic construction of computation graphs that
can change their structure throughout the execution process,
depending on the data flowing through the pipeline. Finally,
APIs exist for hierarchically encapsulating a sub-graph of
multiple components into a single composite component.

Overall, the runtime, tools, and components provided by
\psi streamline development efforts both at the level of the
component writer, and at the level of the application writer.
The same developer can alternate between both roles, uti-
lizing both off-the-shelf components provided in the frame-
work or available from the community in order to assemble
their application, while also occasionally writing new com-
ponents to target specific functions needed by their applica-
tion. New components can be easily developed and added
in a way that shields component authors from the intrica-
cies of the concurrent, coordinated execution environment.
We hope the existing set of components will grow into an
even larger ecosystem through community contributions,
further lowering the barrier to entry for developing multi-
modal integrative-AI applications.

Implications for HRI
The scope and use-cases of Platform for Situated Intelli-
gence are broad: any application that processes streams of
data, and where timing is important, can benefit from its
programming models, primitives, and tools. Examples range
from analyses of multimodal data all the way to open-world
social robots. As such, we believe the framework is particu-
larly well-suited for researchers in HRI.

Given the acute needs in this space, a number of related
infrastructure and development tools have been developed
over the years, such as IrisTK, SSI, MediaPipe, and ROS.
IrisTK (Skantze and Al Moubayed 2012) is a Java-based
framework that focuses on multiparty face-to-face interac-
tion and social robotics; it provides a set of modules for per-
ception and production, and formalizes the authoring of dia-
log control around Harel state-charts. The Social Signal In-
terpretation (SSI) framework (Wagner et al. 2013) provides
tools that enable synchronized recording, analyzing, and rec-
ognizing human behavior in real time. MediaPipe (Lugaresi
et al. 2019) enables developers to easily create custom per-
ception pipelines as graphs of modular components, con-
necting sensors to arbitrary ML inference models and other
media processing components.

Most familiar to the HRI community is Robot Operat-
ing System (ROS) (Quigley et al. 2009), which provides a
message-passing infrastructure, an open ecosystem of com-
ponents, and a set of tools that simplify development of
robotics applications. In ROS, each component executes in
its own process, and a topology-aware central node handles
connections. Since inter-process communication is more

costly, this tends to lead to the development of coarser,
monolithic components. By contrast, \psi applications tend
to contain a large number of fine-grained components, all
residing in the same multi-threaded process, with the \psi
runtime efficiently handling message scheduling and com-
munication. This architecture affords powerful features such
as delivery policies, throttling, and back-pressure.

Each of these frameworks has beneficial attributes, and
all have been successfully used in research. Distinguishing
characteristics of \psi include its programming model which
aims to leverage pipeline parallelism and encourages small,
light-weight components that are executed in a concurrent
yet coordinated fashion, its large set of pre-built primitives
for reproducible synchronization and for reasoning about
and manipulating temporal streaming data, and its debug-
ging and visualization tools to speed up development.

Platform for Situated Intelligence is designed as an exten-
sible framework, and can bridge to and integrate with other
ecosystems such as ROS, Python, JavaScript, Unity, etc. One
can construct hybrid systems that take advantage of differ-
ent affordances in different frameworks, e.g., a mobile social
robot that uses ROS nodes for navigation and \psi compo-
nents for social perception. In addition to what is currently
built-in, developers can write their own third-party visualiz-
ers and third-party data importers, e.g., for WAV files, mpeg
videos, ROS bags, and so on. \psi applications can execute
on a single machine, or can be distributed across multiple
machines through remoting capabilities.

We plan to continue to extend the functionality and com-
ponents available in \psi, with a particular focus on embod-
ied, physically-situated interaction. We are working on more
components and tools for multimodal perception of the sit-
uated social context, controllers for generating utterances,
intentions, and actions, and realizers for rendering those ac-
tions onto the behaviors of a social robot or virtual agent.

Given the challenges around multimodality, integrating
multiple technologies, and handling time and data synchro-
nization, it is no surprise that we have still not seen large
breakthroughs in the space of complete end-to-end systems
that can interact with people in the real world, like we have
for the individual component technologies and research that
can be conducted offline over large datasets. Enabling peo-
ple to make breakthroughs on larger integrative systems is
what \psi was built to achieve. Ultimately, we believe low-
ering the barrier to entry in this space will rest to a large
degree on fostering a community of users and contributors,
and creating a thriving ecosystem of reusable components.

To learn more and get started with the framework, please
see https://github.com/microsoft/psi for walkthroughs, sam-
ples, and documentation. We invite anyone who is interested
to help improve and evolve the platform, and we welcome
contributions across the board: from simply using it and fil-
ing issues and bugs, to writing and releasing new compo-
nents, to contributing new features or bug fixes.
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