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Abstract

One challenge with introducing robots into novel environ-
ments is misalignment between supervisor expectations and
reality, which can greatly affect a user’s trust and continued
use of the robot. We performed an experiment to test whether
the presence of an explanation of expected robot behavior af-
fected a supervisor’s trust in an autonomous robot. We mea-
sured trust both subjectively through surveys and objectively
through a dual-task experiment design to capture supervisors’
neglect tolerance (i.e., their willingness to perform their own
task while the robot is acting autonomously). Our objective
results show that explanations can help counteract the novelty
effect of seeing a new robot perform in an unknown environ-
ment. Participants who received an explanation of the robot’s
behavior were more likely to focus on their own task at the
risk of neglecting their robot supervision task during the first
trials of the robot’s behavior compared to those who did not
receive an explanation. However, this effect diminished after
seeing multiple trials, and participants who received explana-
tions were equally trusting of the robot’s behavior as those
who did not receive explanations. Interestingly, participants
were not able to identify their own changes in trust through
their survey responses, demonstrating that the dual-task de-
sign measured subtler changes in a supervisor’s trust.

Introduction and Related Work

As we introduce robots that perform tasks into our environ-
ments, the people who live and work around the robots will
be expected to maintain their own productivity while largely
ignoring the robots as they move around and complete jobs.
While this pattern of behavior around robots can be expected
to develop over time, the introduction of a new robot is fre-
quently disruptive to people in its environment in several
ways. First, people are uncertain of a robot’s autonomous be-
haviors when it is first introduced. People for whom a robot
is novel are typically observed testing the robot’s abilities
(e.g., (Gockley et al. 2005; Bohus, Saw, and Horvitz 2014))
and monitoring robot behavior in the environment rather
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than executing their own tasks (e.g., (Burgard et al. 1998;
Thrun et al. 1999; Kanda et al. 2010; Rosenthal and Veloso
2012)). Additionally, even people who understand basic be-
haviors of robots often must intervene to help robots over-
come failures or errors in their autonomy (De Visser et al.
2006). Failures impact both human productivity and their
trust in the robot’s behavior (Desai et al. 2012).

One proposed technique to create appropriate user expec-
tations (Tolmeijer et al. 2020) and overcome the challenges
of human uncertainty and mistrust for different types of in-
telligent systems is to provide feedback and explanations to
users (e.g., (Lim, Dey, and Avrahami 2009; Ribeiro, Singh,
and Guestrin 2016; Desai et al. 2013; Abdul et al. 2018)).
Bussone, Stumpf, and O’Sullivan (2015) found that expla-
nations of machine learning predictions align user’s mental
models such that they increase their trust and reliance on
the predictions. Recent work has extended the idea of ex-
plainability to robot decision processes to help people un-
derstand, for example, why a robot performs an action based
on its policy (Hayes and Shah 2017) or its reward function
(Sukkerd, Simmons, and Garlan 2018), or to summarize the
robot’s recent actions for different people and/or purposes
(Rosenthal, Selvaraj, and Veloso 2016). While explanation
algorithms have been successfully compared to human ex-
planations, little has been done to understand how explana-
tions impact trust of autonomous mobile robots.

Most commonly, researchers use subjective surveys to
measure trust on binary (Hall 1996), ordinal (Muir 1989a),
and continuous (Lee and Moray 1992) scales. These scales
can be measured one time or many times to build up metrics
such as the Area Under the Trust Curve (AUTC) (Desai et
al. 2012) and Trust of Entirety (Yang et al. 2017). Objective
measures of trust have also been proposed, including neglect
tolerance, which we use in this work. The neglect time of a
robot is the mean amount of time that the robot can func-
tion with task performance above a certain threshold with-
out human intervention, and neglect tolerance is the overall
measure of robot autonomy when neglected (Goodrich and
Olsen Jr 2003). Neglect tolerance in particular is an impor-
tant objective measure because autonomous operation is a
primary goal of robotics research and development. For a
user, it is a key contributor to the amount of trust that can



be placed in a robot. The more a user can neglect instead of
attend to a robot, the more they can focus on other tasks.

Towards the goal of measuring the effects of explanations
on both subjective and objective trust, we designed a dual-
task experiment in which participants were asked to allo-
cate their attention to a robot’s behavior and a video game.
Participants were asked to play a basic video game while
monitoring a robot as it navigated a path across a large grid
map. They were directed to note if the robot entered cer-
tain squares on the grid while also playing the game to their
maximum ability. Some participants also received an expla-
nation of how the robot would move around the map and
which squares it would try to avoid, and some did not. We
used video game performance as a proxy for measuring ne-
glect tolerance, trust and reliance. Slower and less successful
gameplay indicated that more attention was diverted to the
robot, which in turn implied less trust and reliance on the
autonomy. Additionally, we used questionnaires to examine
subjective ratings of trust in the robot across navigation con-
ditions. We hypothesized that receiving an explanation of
the robot’s behavior would increase trust as measured by the
time allocated to gameplay versus supervising the robot as
well as subjective trust ratings.

Our results show that our dual-task experiment was able to
measure differences in trust. Key press count and key press
rate for the game were both slower when the robot made
errors by entering target squares compared to when it did
not, indicating that the participants spent more time moni-
toring the robot during periods when an error occurred. Par-
ticipants’ time to report an error did not drop, indicating that
participants traded off gameplay performance (key presses)
in order to monitor the robot rather than miss an opportunity
to report an error. In contrast, our surveys did not show any
differences in trust when the robot made errors compared to
when they did not. This result indicates that our dual-task
experiment measured subtle changes in trust that the survey
results could not identify.

The presence of an explanation additionally affected par-
ticipant trust behaviors in the first two of three trials. The
results show that participants who had received an expla-
nation of the robot’s behavior had higher key press counts
and a lower number of game losses during times when the
robot made errors in the first two trials compared to the last
trial. This result indicates that participants initially were able
to focus on the game more because the explanation gave
them information about the robot’s behavior. However, by
the third trial, all participants understood the robot’s behav-
ior and the effect of explanation was no longer significant.
We conclude that an explanation can help counteract the
novelty effect an unfamiliar robot by improving user trust.

Experiment Method

In order to measure the effect of explanations on trust, we
performed a dual-task experiment in which we asked par-
ticipants to simultaneously play an online game while they
monitored each of three robots as they navigated their large
grid maps. Half of our participants also received a brief
explanation before the robots executed their tasks of what
squares on the map each of the robots was programmed to

avoid, while half were given no explanation about the robot’s
programming. For neglect tolerance, we measured the time
that participants spent playing our game as well as the time
it took them to report that the robot was making an error
(i.e., entering a target type of square) during its execution.
Between each robot execution, participants also completed
a questionnaire about aspects of trust they had in that partic-
ular robot during that trial. We evaluated the differences in
each of our dependent measures to understand the how the
tasks affected participant trust through the study.

Autonomous Robot Navigation Setup

We used a Cozmo robot from Anki for this experiment.
Cozmo is a small robot that can move across flat surfaces on
two treads, and it has an associated software development kit
(SDK) allows for programming and executing a large range
of behaviors, including navigation.

We programmed Cozmo to navigate Adventure Maps
from the Cubetto playset available from Primo Toys. These
maps are large, colorful grids with six rows and columns of
icons and measure approximately 1 by 1 meter each. Each
square in the grid fell into one of two categories: background
patterns or icons. For each category, there were multiple ex-
amples: a background on an Egypt-themed map could be
water or sand, and an icon on a space-themed map included
a rocketship. We used the maps from the Big City (referred
to as the Street map), Deep Space (Space map), and Ancient
Egypt (Egypt map) Adventure Packs mounted on foam core
poster board for stability (Figure 1).

Three paths were chosen for each map: one that did not
enter a particular type of square on the map (no error), one
that entered that square type at the beginning of the path
(early error), and one that entered that square type at the
end of the path (late error). The Egypt map had ten water
squares that were defined as errors. In the Space map, three
comet squares were identified as errors. The Street map con-
tained five error squares that looked like streets. The paths
and indicated errors are shown in Figure 1, and these are
referred to as the Error Finding conditions.

Cozmo navigated the paths in an open loop as it was not
actively sensing its location on the maps. Cozmo’s paths
were found to be very consistent in terms of the robot stay-
ing in the required squares throughout the study. The exper-
imenter could select a map and a specific path at the begin-
ning of each trial. All of the robot’s motions were logged
and timestamped in a file labeled by the participant number
and their error condition order.

We told participants that there were three distinct robots
indicated by different colored tapes on their backs in order
to reduce potential confusion about whether the robots were
using the same algorithms. However, there was only one ac-
tual robot used for consistency in navigation.

Participant Tasks

Participants were asked to simultaneously supervise the
robots as they navigated the maps and maximize their scores
in an online game of Snake.



(a) Egypt map

(b) Space map

(c) Street map

Figure 1: Participants were each asked to monitor three robots executing tasks (one per map). They were each randomly assigned
to a condition order in which they saw a path with no error (indicated with green circles), early error (yellow circles), or late

error (red circles) for 6 total possible condition combinations.

Supervisory Task Participants were asked to indicate by
a button press when the robot entered the indicated type of
error square (i.e., whether/when it enters water for the Egypt
map, a comet square on the Space map, and a street square
on the Street map). This task required them to maintain some
knowledge about where the robot was located on the map
and where the potential error squares were located, typically
by occasionally watching the robot’s behavior.

Snake Game Task In order to simulate a real-world sce-
nario in which the human supervisor of a robot would need
to perform other tasks at the same time (including, perhaps,
supervising multiple robots or performing their own task),
we created another responsibility for our participants. While
the robot was navigating its path, participants were provided
with a laptop on which to play a web-based, single-player
game of Snake. The goal of Snake is to direct a moving
chain of yellow squares (the snake) around the screen us-
ing the arrow keys and collect as many additional red food
squares as possible by aiming the snake directly at them and
bumping them with the head of the snake (Figure 2(a)). We
asked participants to maximize their score in the game by
collecting as many food pieces as possible without hitting
one of the outer walls (in this case, red squares positioned
along the edges of the gameplay window) or accidentally
hitting the snake body with the head (which becomes more
difficult as the snake becomes longer). In these cases, the
snake dies and participants start over. Participants were not
able to pause the game, so they had to make tradeoffs in their
gameplay in order to successfully monitor the robot.

By hosting the Snake game on a website, we were able
to collect data about every button press made, the score at
any time, the duration of each game, and whether partici-
pants had to restart the game due to the snake hitting obsta-
cles or itself. These data were collected on every event and
measured to the millisecond. We used these logs to mea-
sure differences in the rate and count of key presses and the
number of obstacles hit (game deaths) across trials. The de-
gree to which participants were attending to the game ver-
sus visually inspecting the robot’s progress and monitoring

its errors should be apparent in gameplay slowdown and/or
increases in obstacles hit when participants are not watching
the Snake’s motion.

Explanation Condition

The key between-subjects variable for this experiment was
the explanation provided to the participants about Cozmo’s
navigation behavior. There are many possible explanations
we could have provided, including summaries of the path the
robot would take and the policy in each grid square. How-
ever, we chose a short explanation that followed a similar
pattern found in prior work (Li et al. 2017) in which pref-
erences for particular squares were noted. This brief expla-
nation format was developed to be easy to understand and
recall while not inducing the attribution of goals and mental
states to the robot. In this experiment, only a single square
type was avoided, so it was simple and concise to provide
participants with this information.

Half of the participants (No Explanation condition) were
only told the map description (Egypt, Space, Street) and to
press the button if Cozmo entered one of the error squares
(water, comets, or street). For example:

“This Cozmo navigates the space map. Hit the button if
Cozmo hits the comets.”

For the other half of the participants (Explanation condi-
tion), an additional explanation was provided to explain why
the participants were being directed to hit the button if the
Cozmo entered an error square: to report the mistake.

“This Cozmo navigates the space map and is pro-
grammed to avoid the comets. Hit the button if Cozmo
hits the comets anyway.”

Study Design

Experimental Setup The experiment took place in a small
conference room with an oblong table about 1.3 by 3.5 me-
ters in size. On one half of the table were two places for
people to sit facing each other, one for the experimenter and
the other for the participant. A laptop was positioned at each



spot, and a USB-linked button was positioned to the left of
the participant laptop and connected to the experimenter lap-
top. The other half of the table was used for the three maps,
each of which had been affixed to a piece of foam core in
order to ensure that it would stay flat enough for the robot
to traverse. Before each trial, the experimenter placed the
appropriate map to the left of the participant and positioned
the robot in the correct square. The setup is shown in Fig-
ure 2(b).

Conditions All of the participants saw each of the three
different path conditions (No Error, Early Error, Late Error),
one on each of the three maps for the within-subjects vari-
able Error Finding. They saw the Egypt map first, followed
by the Space map and the Street map. Map order was held
constant because of technological constraints. The order of
the three Error Finding conditions (No, Early, or Late Er-
ror) was randomized for each participant (six total combina-
tions). Alternating participants were assigned to one of the
two Explanation conditions: Explanation or No Explanation.

Participants

Participants were recruited using a community research re-
cruitment website run by the university. In order to take part
in this research, participants had confirm that they were 18
years of age or older and had normal or corrected-to-normal
hearing and vision. Sixty individuals successfully completed
the experiment (29/30/1 female/male/nonbinary; age range
19-61 years, M age = 28.65, SD age = 10.39), including five
in each of the twelve combinations of conditions (6 Error
Finding x 2 Explanation). They provided informed consent
and received compensation for their time. This research was
approved by our Institutional Review Board.

Procedure

Upon arrival at the lab, each participant provided informed
consent and was given the opportunity to ask the exper-
imenter questions. They then completed a questionnaire
about demographics (including age, gender, languages spo-
ken, country of origin, field of study, and familiarity with
robots, computers, and pets) and the Ten-Item Personality
Inventory (Gosling, Rentfrow, and Swann Jr 2003).

The participant was then told that the goal of the experi-
ment was to assess people’s ability to simultaneously mon-
itor the robot while completing their own task. The experi-
menter introduced the Snake game and the participant was
given the opportunity to practice playing Snake on the lap-
top for up to five minutes (as long as it took for them to
feel comfortable) in the absence of any other task. Next, the
experimenter instructed the participant that there would be
three scenarios in which the participant would play Snake as
much and as well as possible while also monitoring the robot
as it completed its map navigation task. The participant was
told to press the yellow button to the left of the laptop when
the robot entered the indicated squares and that the button
would make the computer beep to record the feedback, but
the robot would continue entering the square. The partici-
pant was asked to press the button for familiarization and to
ensure firm presses.

The experimenter set up the Cozmo robot and the first
map. She told the participant that Cozmo would be navigat-
ing the map and to press the button if it ventured into the rel-
evant squares. The participants in the Explanation condition
were told specifically that the Cozmo had been programmed
to avoid these squares and to press the button if it entered
them anyway. Participants in the No Explanation condition
were told to hit the button if Cozmo entered specific squares.
For each participant, the experimenter selected a random or-
der of Error Finding conditions and the robot was prepared
to complete the first condition. The experimenter and partic-
ipant verbally coordinated so that the Snake game and the
robot navigation began simultaneously. After approximately
one minute (range 57-67 seconds), the Cozmo completed its
journey and the experimenter instructed the participant to
end the Snake game (i.e., let the snake crash into the wall).
The participant then completed a survey about their trust in
the robot and their ability to complete the two simultaneous
tasks. The same procedure was then repeated for the sec-
ond and third maps. For each map, the robot had a piece of
colored tape covering its back in order to enable the conceit
that three different robots were being used. This tape was
switched out of sight of the participants, so it appeared as
though the experimenter had brought a different robot to the
table. We provided this visual differentiation to attenuate the
effects of participants developing mental models of the robot
across maps.

Measures

We used participant performance on the Snake game and
their ability to detect robot navigation errors as objective
measures. Subjective measures included questionnaire re-
sponses from the participant after each trial.

Snake Game Task Objective Measures To analyze per-
formance on the Snake task, we created windows that ex-
tended 10 seconds before and after the time at which the
robot was programmed to commit an early or late error for
each map. We created three variables: key count, the num-
ber of times a participant pressed a key to control the game
during the 20-second window; key rate, the average time be-
tween each key press, measured in milliseconds; and death
count, the number of times the participant died in the game
during the window. We were thus able to compare behavior
across the two 20-second windows for each map and deter-
mine the degree to which game performance was affected
by the occurrence of an error in one specific window (errors
only occurred in one of the two windows per map). We used
these data as proxy measures for participant attention to the
game at any given time and examined how these numbers
corresponded to the status of the robot and the experiment
condition.

Robot Monitoring Task Objective Measures Using the
Cozmo log files, we calculated the latency between Cozmo
entering an error square and participant button press to no-
tify us of the error. These response times were compared
across conditions to determine how the timing of an error
and the task explanation affected participant performance on



(a) Experimental Setup

(b) Snake Game

Figure 2: (a) The experimental setup shows the robot on the Egypt map, the participant computer for the online Snake game,
and the experimenter’s computer logging the robot’s behavior and the button presses from the yellow button. (b) Participants
were asked to play the Snake game by pressing the arrow keys to move the snake head (indicated with a red circle) over the red
food pieces while avoiding hitting itself and the red walls around the board.

the Error Finding task. We also noted if the participant ne-
glected to report any errors that did occur.

Subjective Measures Participants completed a question-
naire after every trial of the study that included 15 rat-
ing questions and a question about estimating the number
of errors made by the robot. The rating questions were
completed on a 7-point scale ranging from Strongly Dis-
agree to Strongly Agree and included questions on wariness,
confidence, robot dependability, robot reliability, robot pre-
dictability, the extent to which the robot could be counted
on to do its job, the degree to which the robot was mal-
functioning, participant trust in this robot, participant trust in
all robots generally, whether the participant will trust robots
as much as before, whether the robot made a lot of errors,
whether the participant could focus on Snake or if the robot
required too much attention, whether the participant spent
more time on Snake or robot monitoring, whether it was hard
to complete the Snake task during robot monitoring, and
whether the participant would spend more time watching the
robot if doing the study again. Many of the questions on the
post-experiment questionnaire were adapted from previous
research by Jian and colleagues (Jian, Bisantz, and Drury
2000) and Muir (Muir 1989b); others were created specifi-
cally by us to assess dual-task experiences.

Hypotheses

We hypothesized that the explanation of the robot’s behav-
ior allows participants to anticipate the robot’s behavior so
that they can be more selective in how they focus their at-
tention between the two tasks. In terms of our measures, we
expected explanations to result in better game task perfor-
mance (higher key counts, lower key rate, and fewer snake
deaths) compared to no explanations (H1). We thought that
the explanations would have a greater effect when the robot
is novel and diminish over time (H2), and they would lead to
higher subjective measures of trust (H3). Additionally, fol-
lowing prior work, we expected to find that robot errors re-
duced both objective and subjective trust measures (H4).

Results

We used performance metrics from the two tasks in the ex-
periment and responses to the questionnaires to assess trust
in the robot both directly and indirectly.

Dual-task performance

First, we examined key count for the Snake game. Partici-
pants did not significantly press fewer buttons during time
windows in which the robot made an error, F = 3.112, p =
0.080 (Figure 3(a)). There were no significant main effects
of explanation condition, error order, or map. We found a
significant interaction between map and explanation condi-
tion, F =3.161, p = 0.045, such that participants in the expla-
nation condition had higher key counts than those in the no
explanation condition for the first two maps, but similar key
counts in the last map, although the pairwise comparisons
were not quite significant (Figure 3(b)).

We found a significant main effect on key rate for whether
there was an error, F' = 4.868, p = 0.029, such that the time
between key presses was higher (i.e., a lower key press rate)
when the robot made an error than when it did not. No other
significant main effects or interactions were found.

For death count, there were no significant main effects,
but there was a significant interaction between map and ex-
planation condition, F = 4.374, p = 0.0139 (Figure 3(c)).
Although pairwise comparisons were again not significant,
a pattern of effects was found that participants who received
no explanation had higher death counts for the first two maps
than those who received explanations, but this difference di-
minished by the third map. There was also a significant inter-
action between error order and whether there was an error,
F =5.536, p = 0.0198. An early error with no explanation
was most likely to result in death, followed by early error
with explanation, late error with explanation, and late error
with no explanation. Pairwise comparisons were significant
between early error/no explanation and late error/no expla-
nation only.

We also examined button press data to assess whether par-
ticipants were attending to the robot as it traversed the maps.
There were no significant main effects of any of our condi-
tion manipulations on how long it took participants to hit
the yellow button after the robot entered one of the error
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Figure 3: (a) Participants’ key counts when the robot was not making an error compared to when it was. (b) Participants who
received an explanation made significantly more key presses in the first two maps compared to those who did not. There was
no difference between explanation conditions on the last map. (c) Similarly, participants who received an explanation died in
the Snake game less frequently in the first two maps, but not the third.

Questionnaire Item Significant Effects

Wary Error**

Confident Error**

Dependable Error**

Reliable Error**

Count on this robot Error**

Trust this robot Error**

Predictable Interaction Map x Error*
Malfunctioning Error*, Interaction Map x Error*

Trust robots in general —
Not trust robots as much | Interaction Map x Explanation*
The robot made errors Error**

Table 1: Significant main effects and interactions for trust-
related questionnaire items. * = p < 0.05; ** = p < 0.005.

squares. In general, participants were very fast and accurate
in pressing the button to report robot errors.

Overall, these dual-task performance results suggest that
errors made by the robot significantly affected the Snake
game task key rate and although did not quite affect key
count, partially in line with our fourth hypothesis (H4) for
the objective measures of trust. This result suggests that
the supervisory task did require that participants slow down
their game performance to report errors for the robot. Partic-
ipants were able to slow down the key rate without reducing
the accuracy of reporting errors and without an increased
Snake death count. Additionally, although our findings do
not support our hypothesis that explanations would improve
gameplay overall (H1), the Explanation condition had no-
table effects on key count and death count in the beginning
of the experiment on the first two maps and decreased for
the last map, providing some support for hypothesis H2.

Questionnaires

Participants answered 16 questions after each trial to exam-
ine their feelings about the specific robot they had just seen
as well as robots in general. For many of these questions,
there was a significant main effect of which error condition

they had just seen on the participants’ responses.

Ratings of “I am wary of the robot” were significantly af-
fected by error condition, F' = 6.260, p = 0.003, such that rat-
ings for early error and late error were significantly higher
(measured by Tukey HSD pairwise comparisons) than rat-
ings when there was no error, p < 0.05. There was not a
significant main effect of explanation condition, F = 3.471,
p =0.068.

Similarly, there was a significant main effect of error con-
dition for “I am confident in the robot,” F = 10.628, p <
0.0001, such that the ratings for no error were significantly
higher than early and late error, p < 0.05. The same pattern
for error condition, including pairwise comparisons, was ob-
served for “The robot is dependable,” “The robot is reliable,”
“To what degree can you count on the robot to do its job?”,
and “T trust this robot,” all F > 12.000, all p < 0.0001, all
pairwise comparisons significant for no error versus early
and late errors p < 0.05. For these questions, there were no
other significant main effects or interactions.

For the item “To what extent can the robot’s behavior be
predicted from moment to moment?”, there were no signif-
icant main effects of explanation, map, or error condition.
There was a significant interaction between map and error
condition, F = 3.118, p = 0.017, but no significant pairwise
comparisons were identified using Tukey HSD.

Ratings of “The robot was malfunctioning” were signifi-
cantly affected by error condition, F = 11.448, p < 0.0001.
Pairwise comparisons found that these ratings were signif-
icantly lower for the no error condition (M = 1.517, SD =
0.965) than for the early (M = 2.183, SD = 1.432) or late (M
=2.267, SD = 1.388) error conditions, p < 0.05. There was
also a significant interaction between explanation and error
condition, F' =3.205, p = 0.045, such that explanations com-
bined with early and late errors elicited significantly higher
ratings than when there were no errors, regardless of expla-
nation condition. Having no explanation combined with ei-
ther early or late error produced intermediate ratings that
were not significantly different from other combinations’
ratings. The explanation says that the robot is programmed
to avoid those squares, resulting in an assessment of mal-



function when it does.

None of our manipulations affected ratings of “I trust
robots in general.” There were no significant main effects
of our manipulations on ratings for “I will not trust robots
as much as I did before,” although there was an interac-
tion between map and condition, F = 2.550, p = 0.0416. No
pairwise comparisons were significant, however. These two
questions sought to measure whether our study affected trust
in robots beyond the experiment itself.

We asked participants two questions specifically about
how many errors the robots made. For “The robot made a lot
of errors,” there was a significant main effect of error condi-
tion, F' = 23.093, p < 0.0001, such that early and late errors
elicited significantly higher ratings than when there was no
error, p < 0.05. When prompted to “Estimate the number
of errors made”, participant ratings had a main effect of er-
ror condition, F = 149.079, p < 0.0001. They were generally
extremely accurate in identifying the number of errors made.

We asked participants a few questions about their dual-
task experience. There were no significant main or interac-
tion effects for ratings of “I could not focus on the Snake task
because the robot needed my attention.” For ratings of “I
spent more time watching the robot than on the Snake task,”
there was only a significant interaction of error condition
and explanation, F' = 3.239, p = 0.0431, such that an early
error with an explanation elicited higher ratings than no er-
ror with an explanation (p < 0.05), but no other pairwise
comparisons were significant. Ratings for “It was hard to
complete the Snake task while watching the robot” showed
only a significant main effect of which map was being used,
F =4.161, p = 0.0182, with ratings for the first map being
higher than the second and third maps (p < 0.05), suggesting
that perceived difficulty decreased with practice. Finally, rat-
ings for “If I did this study again, I would spend more time
watching the robot” was not significant for error condition,
F =2.821, p = 0.0641, with not-quite-significantly higher
ratings for early error than for late error or no error. There
was a significant interaction of map and error condition, F =
2.568, p = 0.0407, but no significant pairwise comparisons.

Overall, the questionnaire responses clearly reflect that
participants were monitoring the robot’s performance levels,
and errors made by the robot were reflected in assessments
including trust, dependability, and reliability. These findings
provide partial support for our fourth hypothesis (H4) by
confirming that errors reduced subjective measures of trust.
Having an explanation for the robot’s behavior had no major,
independent effects on questionnaire responses. This fails to
confirm our hypothesis H3 that explanations would improve
subjective measures of trust.

Discussion

Our results partially supported our hypothesis H2 that expla-
nations of the robot’s behavior would significantly affect the
participants’ gameplay during early trials of the dual-task
experiment but not in the last trial, when the robot was more
familiar. By the third trial, the participants who received no
explanation for the robot’s behavior improved their game-
play enough that the explanation did not matter. However,
there was no main effect of explanations on objective trust

(H1) nor subjective trust (H3) throughout the entire experi-
ment. Additionally, there was some support for our hypothe-
sis H4 that participant trust, measured both by gameplay and
by questionnaire, was significantly affected by the robot’s
erTors.

Role of Explanations. Neglect tolerance measures in our
dual-task experiment suggest that errors in robot perfor-
mance deflect effort from the game task to increase moni-
toring of the robot. While robot errors reduced participant
neglect tolerance (supporting H4), providing explanations
for the robot’s behavior boosted this tolerance during early
trials (supporting H2). We provided a relatively simple ex-
planation for the robot’s task: it was programmed to avoid
certain squares. Alternatively, participants with no explana-
tion were simply told to hit the button when the robot entered
those squares. While the explanation was not long nor very
specific about the robot’s path, it still significantly impacted
the participants in the task. It is possible that the explanation
led participants to maintain their focus on the game rather
than spending more effort tracking the robot’s movements
because it suggested that the robot ought not enter those
squares and would actively avoid them. It is likely that this
impact on neglect tolerance was higher when the situation
was still novel because the participants had not seen very
many errors occur at that point and had not created their own
updated mental models for the robot’s performance.

Additionally, providing different types of explanations for
robot behavior could also change neglect tolerance. Our ex-
planation suggested that the robot would avoid entering cer-
tain areas of the map, which could bias the observer’s mental
model to assume that the robot would not make errors. Al-
ternative explanations, including which landmarks the robot
passes over or what turns it makes through the map, could
bias the person further in the same direction by providing
more detail about the robot’s programming and/or emphasiz-
ing that entry to those areas is a mistake, or they could bias
the person to think it is not particularly important whether
the robot enters those areas. It is possible that the effects of
any explanations would be attenuated by a more challeng-
ing task competing with supervision of the robot. Future re-
search should examine the effects of multiple levels of ex-
planations and task difficulty on neglect tolerance.

Subjective Ratings of Trust. As predicted in hypothesis
H4, the presence versus absence of an error had significant
negative effects on many participant ratings of the robot,
including measures of trust, reliability, and dependability.
However, ratings of robot malfunction were generally low
even after an error had occurred. Notably, whether partici-
pants had received an explanation of robot behaviors did not
significantly affect their ratings of the robot (contradicting
H3).

Overall, the questionnaire results did not reflect the
changes in behavior that were observed, indicating that sub-
jective measures of trust are not sensitive enough to catch
subtle differences for certain tasks. In order to accurately
measure robot autonomy and the ability of a person to do
another task while still monitoring the robot, questionnaires
do not properly evaluate that level and type of trust (as found
in (Desai et al. 2013) and (Yang et al. 2017)). Recording and



assessing data from the dual task provided a better measure
of trust through neglect tolerance.

Dual Task Experiment Design. Our task was brief and
each trial included no more than one error. To learn more
about how people allocate attention and effort, future re-
search should investigate the effects on neglect tolerance of
different robot error rates and amounts. Frequent errors or
near-misses might close the gap between observers who did
and did not receive explanations because it would quickly
force reassessment of the observers’ mental models. More-
over, an increase in these factors would likely result in worse
performance on the other task. Additionally, attention and
effort allocation could be biased towards the alternative task
by increasing the difficulty of that task. For our game, it was
possible to slow down the button presses and avoid hitting
obstacles in order to avoid losing the game; however, a game
with more obstacles or opportunities to win points in shorter
time spans might elicit more effort from the player and di-
vert attention away from the robot. For real-world robot su-
pervision, it is important to know what task is appropriate
for people to do in addition to noticing robot behaviors.

Novelty Effect. Finally, our examination of novelty was
relatively limited. An increase in the number, variety, and
length of trials would allow further assessment of the degree
to which explanations matter as someone gains more experi-
ence with the robot. Moreover, it is possible that map order
impacted our results. There also are likely long-term effects
of practice on both tasks. Novelty effects might also relate
to task difficulty such that explanations impact user’s mental
models about the robot for a longer period of time if they are
expending their effort on the other task because they do not
have the cognitive effort available to update these models.

Conclusion

We conducted a dual-task experiment to study the effect of
explanations on robot trust. We measured participants’ ne-
glect tolerance—the time that participants spent watching
our robot versus performing their own task—as well as sub-
jective trust through surveys. While explanations did not
have a main effect on objective or subjective trust measures,
they did have an effect that counteracts the novelty of see-
ing a new robot for the first time. Additionally, we found
that our neglect tolerance measure was able to identify sub-
tle changes in trust compared to survey measures that did not
find significant differences across conditions in the study.
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