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Abstract
In this paper, we propose a minimum set of concepts and sig-
nals needed to track the social state during Human-Robot
Interaction. We look into the problem of complex contin-
uous interactions in a social context with multiple humans
and robots, and discuss the creation of an explainable and
tractable representation/model of their social interaction. We
discuss these representations according to their representa-
tional and communicational properties, and organise them
into four cognitive domains (scene-understanding, behaviour-
profiling, mental-state, and dialogue-grounding).

Understanding the world around us, and the intricate inter-
actions that can take place in it, is a complex topic that has
attracted interest from a large number of disciplines span-
ning philosophy, psychology, sociology, cognitive science,
neuroscience, artificial intelligence, computer vision and
robotics. While progress has been made (across all fields)
and many theories, systems and architectures partially re-
producing some parts of these cognitive skills have been de-
veloped (Kotseruba and Tsotsos 2018), the full mechanisms
of cognition that explain these abilities in humans are still
not completely understood (Frith and Frith 2012). Therefore,
how to accurately obtain and interpret a representation of
the social world remains a current problem for developing
Socially Assistive Robots (SARs) (Feil-Seifer and Mataric
2005). This problem is generally approached by the decom-
position of the cognitive processes involved and a simplifi-
cation of the interaction tasks.

In the last few years we can identify major advances
in many of these topics, such as environment modelling
(Rosinol et al. 2020b), human activity recognition (Kong
and Fu 2018), speech recognition and speaker identification
(Kanda et al. 2020), conversational agents (Cercas Curry
et al. 2018), natural language understanding (Vanzo, Bas-
tianelli, and Lemon 2019), language grounding (Yu, Es-
hghi, and Lemon 2017), interactive task learning (Chai et al.
2018), analysing interactions and behaviours (Tapus et al.
2019), emotion recognition (Egger, Ley, and Hanke 2019),
personality detection (Mehta et al. 2019), inferring inten-
tions (Bianco and Ognibene 2019), and learning human-
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Figure 1: The space of the social-world model is grouped
into 4 cognitive domains (scene-understanding, behaviour-
profiling, mental-state and dialogue-grounding), organized
at opposite ends across 2 functional dimensions: communi-
cational, verbal (dialogue) vs non-verbal (behaviour), and
representational, external (scene) vs internal (mental).

robot interactions (Liu et al. 2018), among others. Based
on the presented background, we define a minimal “social
state” which enables continuous social interaction between
SARs and humans by supporting reasoning and decision
making during interaction with multiple agents and the envi-
ronment. To this end, we i) group the above topics into areas
of cognitive domains, presented along two dimensions (see
Figure 1) as we consider their representations and intercon-
nections; and ii) present a minimal set of signals/information
that will be needed to define a social state. Maintaining such
a model of the world and the social interactions is a complex
task which makes decomposition and simplification a neces-
sary abstraction. This abstraction, however, presents not just
a challenge but an opportunity to not only reason about the
state of the world and the agents within but also facilitate the
creation of explainable decision-making engines that are not
purely based on raw sensor data, as in most machine learning
approaches, but on higher-level representations of the world.
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Model of the Social/World Interaction
The main focus in Human-Robot Interaction (HRI) is often
on the robot response, overlooking the way humans inter-
act and preventing the robot from adapting to general sit-
uations (Bianco and Ognibene 2020). In order to address
this, we need to be able model the whole interaction taking
place in a tractable form that can inform other parts of the
system. That is, the social nature of an agent should spread
through its cognition by creating mechanisms for construct-
ing social representations as an interpretation of the physi-
cal world, that allows processing of diverse social situations
(Rato, Mascarenhas, and Prada 2020).

Developing SARs with the capacity of performing natural
and continuous interactions in a social context with multi-
ple agents in an ‘open-domain’ requires the robot to show
the ability to track and ascribe social meaning to its sen-
sory information. SARs must explore the environment and
understand what the environment affords, including which
objects, actions, events, and scene information can be ex-
tracted from the sensory data. They must track the state of
each agent, and track their conversations, determining what
they are saying and to whom, where their attention is at, as
well as predicting their goals, and their affective and emo-
tional states, etc. They must also ‘know’ when to perform
communicative actions and decide whom to respond to, and
when and how to address one or more people. Developments
in signal processing, behaviour analysis, multi-modal dia-
logue, machine learning, and robotics allow us to obtain rich
sensory information from the world, but this is not enough as
social signals are intrinsically ambiguous (Vinciarelli, Pan-
tic, and Bourlard 2009), and agents must rely on the relation-
ship between such elements (Rato, Mascarenhas, and Prada
2020). We suggest here, to broadly visualise these relation-
ships according to the information that they contain by first
categorizing then in terms of two dimensions.

Communication dimension: human actions convey or
express social information, either verbally, in dialogues
and conversations, or non-verbally, in gestures, behaviours,
pose, etc. We also know that the non-verbal behavior of an
agent is critically important as well as its verbal behaviour
(Vinciarelli, Pantic, and Bourlard 2009). Hence, the social
state must track both these domains to maintain conversa-
tion and interactions in their social context.

Representational dimension: social interactions are di-
rected by what can be perceived or described from the envi-
ronment as well as what can be predicted or estimated from
the agent’s internal belief, states, or desires. The social state
must then keep both external (scene) and internal (mental)
representations of the environment.

We can see for each of these dimensions, the existence
of two domains, differentiated by their nature as explained
above. In this way we can organized the representations (see
Figure 1) into four domains (dashed circles) set across the
two dimensions (solid lines). We propose this as an abstrac-
tion, as the dimensions are not to be considered as measur-
able spectrum but as a construct to distinguished the do-
mains. So that the verbal (dialogue) and non-verbal (be-
haviour) domain can be intuitively separated on a commu-
nicational dimension, and the external (scene) and internal

(mental) domain can be separated on the representational
dimension. Furthermore, these domains are not excluding as
they can be complementary to each other and can be used
to help one another to extract meaning from/for the social
context (interconnecting lines among domains), e.g. we can
infer a person’s intention by their gestures or conversation;
dialogue can be grounded by what is known from the scene,
or the person’s goals; the estimation of a person’s behaviour
can be informed by the knowledge of the environment or the
mental state attributed to them, etc.

Therefore, we propose the formation of four synergetic
models for the: 1) representation of the scene; 2) representa-
tion of the person’s behaviours; 3) representation of the in-
ternal mental states; 4) representation of the conversations.

Scene Understanding
The semantic understanding of a scene is important for so-
cial robots applications. Spatial perception and 3D environ-
ment understanding are key enablers for high-level task ex-
ecution in the real world. State-of-the-art approaches use
the Scene Graph paradigm, (Armeni et al. 2019) provides
a hierarchical 3D model that is useful for visualisation and
knowledge organisation. (Rosinol et al. 2020b) propose an
efficient scene representation data structure which can cap-
ture the environment from the lowest level represented as
a metric-semantic mesh up through objects and agents in
the environment up to rooms and buildings. Metric-semantic
understanding provides the capability to simultaneously es-
timate the 3D geometry of a scene (critical for robots to nav-
igate safely and to manipulate objects) and attach a seman-
tic label to objects and structures (providing models of the
environment for a robot to understand and execute human
instructions) (Rosinol et al. 2020a).

The model of the social scenario is a representation of
the scene, see table 1. Where is the interaction taking place?
Who is taking part in the interaction? It models objects,
places, structures, and agents and their relations in a way that
is physically grounded from the environment by the robot’s
sensory information.

Table 1: Representation of the scene.

Feature Signal Description
locale metric-

semantic,
localisation

Where the interaction is
taking place. Different
rooms can require differ-
ent interaction strategies.

agents detection List of agents in the scene
(attended to or not).

objects detection List of (salient) objects.
With attributes and affor-
dances, etc. Tracked in
the interaction.

rooms metric-
semantic

List of places (locales).

scene scene-graph Graph/map of the scene.
Represents spatial con-
cepts (objects, rooms,
agents) and spatio-
temporal relations.



Behaviour Profile

The ability to recognise and model physical human activi-
ties is a key technology to enable the development of useful
HRI applications. The work of (Rossi, Ferland, and Tapus
2017) provides key themes in the context of user profiling
mechanisms and behavioral adaptation from the physical,
cognitive and social interaction viewpoints. (Aggarwal and
Ryoo 2011) provided a classification of the various types of
human activities into four different levels: gestures, actions,
interactions, and group activities. State-of-the-art solutions
on computer vision and deep learning allow analysing the
status of each person in the scene, based on body and head
pose estimation, face recognition, facial landmarks extrac-
tion and the estimation of soft biometric patterns.

The model/profiling of the behaviour is a representation
of the people interacting in the scene, see table 2, and com-
bines persistent data of the user for identification, i.e., name,
id, role, and dynamic data of the user behaviour, i.e., current
activity, focus of attention, location, status.

Table 2: Representation of the person’s behaviours.

Feature Signal Description
ID detection ID of the person.

group ID detection Group they belong to.
role behaviour

analysis
People could belong to
different roles depending
on interaction context.

activity behaviour
analysis

Track current activity.

attention gaze Track focus of attention.
location localization Track current location.

Mental State

Mentalising, mentalisation, or theory of mind refers to our
ability to read the mental states of other agents (Frith and
Frith 2006). Findings in developmental psychology concern-
ing current computational theories describing intention un-
derstanding and mental state inference from observed ac-
tions has inspired the development of architectures for so-
cial robots (Bianco and Ognibene 2020). In (Bianco and
Ognibene 2019), a summary is provided on how theory of
mind features have been integrated in robotic architectures
for HRI. (Rabinowitz et al. 2018) designed a neural network
which uses meta-learning to build such models of the agents,
able to predict the behavior of multiple agents in a false-
belief situation given their past and current trajectories. De-
veloping robots with mentalising capabilities for belief un-
derstanding, proactivity, active perception and learning of
human behavior will further enhance robots’ capabilities and
improve HRI (Bianco and Ognibene 2019).

The model of the mental state is a representation of the
internal model of the robot (agent) state, see table 3. It must
track the intentions and beliefs of participants of the inter-
action, as well as predictions of the goals, motivations and
emotional states, etc.

Table 3: Representation of the agent’s internal mental states.

Feature Signal Description
purpose mentalising Agent’s main goal.

current target mentalising Goal pursued (by the
agent) at present.

emotion state behaviour
analysis

Estimation of agent
affective expression.

motivation behaviour
analysis

Condition of the
agent, i.e, engaged,
busy, waiting, etc.

Dialogue Grounding
Humans use Natural Language (NL) to enable interpersonal
communication, and articulate their thoughts and intentions.
Social robots deployed in diverse human settings will need
to interpret and execute high-level instructions given by NL.

Research in language grounding focuses on solving the
symbol grounding problem for situated robots by leverag-
ing their interactions with the humans they are working to
understand (Thomason et al. 2020). How can we talk to
robots about the surrounding world? Can we enable them
to interactively learn the grounded meanings needed to fin-
ish a task? How can we assist a robot in their navigation or
manipulation task with language instructions? Humans and
robots need to bridge the gap in their representations to build
a common ground of the shared world, for social robots to
be able to engage in language communication and joint tasks
(Chai et al. 2017). Robots and humans will need to negotiate,
using NL, the co-construction of shared representations and
plans. This requires the creation of a unified and robust plan
modelling and execution framework to combine dialogue ac-
tions and physical actions in the same planning domain of
the human-robot social interaction (Dondrup, Papaioannou,
and Lemon 2019).

The model of the dialogue state is a representation of the
conversation, see table 4, tracking what has been said and by
whom, the intents, the entities, the topics during interactions
among multiple agents.

Table 4: Representation of a conversation dialogue turn.

Feature Signal Description
speaker ID detection ID of the speaker.
listener IDs detection IDs of the listeners.

intent NLU The intent of the speaker.
entities NLU Entities in the dialogue.
topic NLU The current topic/task.
onset ASR When the dialogue starts.

transcript ASR Transcript of the dialogue.

Memory
So far we have not think about how memory, or time, relates
to the rest of the representations. One way to look at it is
as a third dimension, orthogonal to the other two, so the so-
cial state could be view as a slices of a plane running in a
Memory domain of current and past social states. For now,
however, we view temporal relations as “integrated” on the
representations, and consider the representations on the so-
cial state to correspond only to the present state in time, and
such we don’t include an explicit model for Memory.



Discussion
In order to create robots able to move, see, hear and commu-
nicate in a social context with multiple agents, and properly
fulfil social roles and successfully execute social tasks, we
need to model the human-robot interactions into an explain-
able and tractable representation of the social state.

Consider a social robot, tasked with interacting with pa-
tients at a clinic/hospital waiting room, in the scenario were
a person comes in an approaches the robot. This immedi-
ately creates a near infinite number of decisions requiring
person identification, tracking, intent beliefs, scene and be-
havior understanding, etc. It could be a new person, e.g. en-
tering for the first time, and the robot would be required to
welcome it, register their details and explain them a proce-
dure to follow next. Or it could be a previously known per-
son, e.g. coming back into the room from having been ex-
amined, asked to wait again for a follow up, here it would
be unlikely that the robot is required to intervene but a so-
cial response acknowledging then back can be desirable. It
could also be one of the persons waiting in the room, e.g.
coming up to the robot to ask a question like ”where is there
a cafeteria or a restroom, or how long till they see them?”.

Ideally a robot would be capable of providing different
responses to all this scenarios. Deep learning approaches
could be used to train an agent to learn the proper social
interaction strategies (Nanavati et al. 2020), (Romeo et al.
2019). Also multiple deep neural networks can be used to
generate the components that will provide inputs to this sys-
tems, such as scene understanding (Zhang et al. 2017), face
detection (Balaban 2019) and natural language processing
(Vanzo, Bastianelli, and Lemon 2019).

These are notorious for being black-box models that are
hard, if not impossible, to interpret and which require expla-
nations. Understanding this explanations will be facilitated
by having then relate to the descriptions of the social state.
Successful human-robot social interactions will required not
only that robots be able to create internal representations
of the physical world, and of collaborative plans about that
world, but also that they are able to communicate and ne-
gotiate about these representations in a manner that humans
can understand.

For instance, in the above scenarios, the Scene and Be-
haviour domains would be fundamental to recognize new
from known persons in the waiting room which determines
different strategies to use to start an interaction with them.
The Mental domain, to infer a person’s interest and needs, is
central to direct the best actions and goals the robot should
pursue. The Conversation domain is essential to lead the
both user and robots in helpful dialogues. The synergies be-
tween these representations are crucial to generate fruitful
interactions, e.g. when asked ”where can I find a cafeteria?”
an advanced Conversation representation is need to handle
such queries, only relying on Scene representation can the
information required to answer be extracted, accurate Men-
tal representations can allow answer that can satisfied the
needs of the user, e.g. the person wants a drink and the robot
can answer ”there’s a vending machine at X”, Behaviour
representation can indicate progress of the interaction, e.g.
the person is following the indication from the robot, etc.

The ideas presented here, therefore, constitute a first step
towards building a decision-making architecture for multi-
party HRI and will be used as the basis for future work on
SARs in healthcare.
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