
Axiom Learning and Belief Tracing for Transparent Decision Making in Robotics

Tiago Mota1,
Mohan Sridharan2

1Electrical and Computer Engineering, The University of Auckland, New Zealand
tmot987@aucklanduni.ac.nz

2School of Computer Science, University of Birmingham, United Kingdom
m.sridharan@bham.ac.uk

Abstract

A robot’s ability to provide descriptions of its decisions and
beliefs promotes effective collaboration with humans. Provid-
ing such transparency is particularly challenging in integrated
robot systems that include knowledge-based reasoning meth-
ods and data-driven learning algorithms. Towards addressing
this challenge, our architecture couples the complementary
strengths of non-monotonic logical reasoning, deep learning,
and decision-tree induction. During reasoning and learning,
the architecture enables a robot to provide on-demand rela-
tional descriptions of its decisions, beliefs, and the outcomes
of hypothetical actions. These capabilities are grounded and
evaluated in the context of scene understanding tasks and
planning tasks performed using simulated images and images
from a physical robot manipulating tabletop objects.

1 Introduction
Consider a robot estimating the occlusion of objects and
stability of object structures while arranging objects in de-
sired configurations on a table; Figure 1a shows such a
scene. To perform these tasks, the robot extracts information
from on-board camera images, reasons with this information
and incomplete domain knowledge, and executes actions to
achieve desired outcomes. The robot also learns previously
unknown axioms governing domain dynamics, and provides
on-demand descriptions of its decisions and beliefs. For in-
stance, assume that the goal in Figure 1b is to have the yel-
low ball on the orange block, and that the plan is to move
the blue block on to the table before placing the ball on the
orange block. When asked to justify a plan step, e.g., “why
do you want to pick up the blue block first?”, the robot an-
swers “I have to put the ball on the orange block, and the
blue block is on the orange block”; when asked, after plan
execution, “why did you not pick up the pig?”, the robot re-
sponds “Because the pig is not related to the goal”.

Our work seeks to enable such on-demand explanations
of a robot’s decisions and beliefs, and hypothetical situ-
ations, in the form of descriptions of relations between
relevant objects, actions, and domain attributes. This “ex-
plainability” can help improve the underlying algorithms
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(a) Test scenario. (b) Robot’s camera image.
Figure 1: (a) Motivating scenario of a Baxter robot arranging
objects in desired configurations on a tabletop; (b) Image
from the camera on the robot’s left gripper.

and establish accountability. This is challenging to achieve
with integrated robot systems that include knowledge-based
reasoning methods (e.g., for planning) and data-driven
(deep) learning algorithms (e.g., for pattern recognition).
Inspired by research in cognitive systems that indicates
the benefits of coupling different representations and rea-
soning schemes (Laird 2012; Winston and Holmes 2018),
our architecture combines the complementary strengths of
knowledge-based and data-driven methods to provide trans-
parent decision making. It builds on our prior work that
combined non-monotonic logical reasoning and deep learn-
ing for scene understanding in simulated images (Mota and
Sridharan 2019). A recent paper described our architecture’s
ability to learn previously unknown constraints and extract
relevant information to construct descriptions of decisions
and beliefs (Mota and Sridharan 2020a). Here, we summa-
rize these capabilities and describe extensions to:
• Incrementally acquire previously unknown action precon-

ditions and effects, exploiting the interplay between rep-
resentational choices, reasoning methods, and learning al-
gorithms to construct accurate explanations.

• Automatically trace and explain the evolution of any
given belief from the initial beliefs by inferring the appli-
cation of a suitable sequence of known or learned axioms.

In our implementation, non-monotonic logical reasoning is
achieved using Answer Set Prolog (Balduccini and Gelfond
2003), and existing network models are adapted for deep
learning. We illustrate our architecture’s capabilities in the
context of a robot (i) computing and executing plans to ar-
range objects in desired configurations; and (ii) estimating
occlusion of objects and stability of object configurations.



2 Related Work
Early work on explanation generation drew on research in
cognition, psychology, and linguistics to characterize expla-
nations in terms of generality, objectivity, connectivity, rel-
evance, and information content (Friedman 1974); studies
with human subjects have supported these findings (Read
and Marcus-Newhall 1993). Computational methods were
also developed for explaining unexpected outcomes (Gene-
sereth 1984; de Kleer and Williams 1987).

There is much interest in understanding the operation
of AI and machine learning methods, and making automa-
tion more acceptable (Miller 2019). Existing work on ex-
plainable AI/planning can be broadly categorized into two
groups. Methods in one group modify or transform learned
models or reasoning systems to make their decisions more
interpretable, e.g., by tracing decisions to inputs (Koh and
Liang 2017), learning equivalent interpretable models of any
classifier (Ribeiro, Singh, and Guestrin 2016), or biasing a
planning system towards making decisions easier for hu-
mans to understand (Zhang et al. 2017). Methods in the other
group focus on making decisions more transparent, e.g., de-
scribing planning decisions (Borgo, Cashmore, and Maga-
zzeni 2018), using partial order causal links for explana-
tions (Seegebarth et al. 2012), combining classical first order
logic-based reasoning with interface design to help humans
understand a plan (Bercher et al. 2014), or using rules as-
sociated with monotonic operators to define proof trees that
provide a declarative view (i.e., explanation) of a computa-
tion (Ferrand, Lessaint, and Tessier 2006). There has also
been work on describing why a particular solution was ob-
tained for a given problem using non-monotonic logical rea-
soning (Fandinno and Schulz 2019). These methods are of-
ten agnostic to how an explanation is structured or assume
comprehensive domain knowledge. Methods are also being
developed to make the operation of deep networks more in-
terpretable, e.g., by computing gradients and constructing
heat maps of relevant features (Assaf and Schumann 2019;
Samek, Wiegand, and Müller 2017), or in the context of
deep networks trained to answer questions about images of
scenes (Yi et al. 2018).

Our work focuses on integrated robot systems that use
a combination of knowledge-based and data-driven algo-
rithms to represent, reason with, and learn from incomplete
commonsense domain knowledge and noisy observations.
We seek to enable such robots to generate relational descrip-
tions of decisions, beliefs, and hypothetical or counterfactual
situations. Recent surveys indicate that these capabilities are
not supported by existing systems (Anjomshoae et al. 2019;
Miller 2019). Our architecture builds on existing work on
making decisions more transparent, and on work in our
group on explainable agency (Langley et al. 2017), a the-
ory of explanations (Sridharan and Meadows 2019), and on
combining non-monotonic logical reasoning and deep learn-
ing for scene understanding (Mota and Sridharan 2019).

3 Architecture
Figure 2 shows the overall architecture. Components to the
left of the dashed vertical line combine non-monotonic log-
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Figure 2: Architecture combines non-monotonic logical rea-
soning, deep learning, and decision-tree induction. Compo-
nents to the right of the dashed line support explainability.

ical reasoning, deep learning, and decision-tree induction
for classification in simulated images (Mota and Sridharan
2019). Components to the right of the dashed line expand
reasoning to explain decisions, beliefs, and hypothetical sit-
uations (Mota and Sridharan 2020a). This paper extends the
reasoning and learning capabilities to: (a) learn action pre-
conditions and effects from experience; and (b) trace any
given belief’s evolution from the initial beliefs through the
application of specific axioms. We focus on the new compo-
nents but summarize all components for completeness, using
the following example domain.

Example Domain 1 [Robot Assistant (RA) Domain]
A robot: (i) estimates occlusion of scene objects and sta-
bility of object structures, and arranges objects in desired
configurations; and (ii) provides on-demand relational de-
scriptions of decisions, beliefs, and hypothetical situations.
There is uncertainty in the robot’s perception and actuation,
and probabilistic algorithms are used to visually recognize
and move objects. The robot has incomplete domain knowl-
edge, which includes object attributes such as size (small,
medium, large), surface (flat, irregular) and shape (cube,
apple, duck); spatial relations between objects (above, be-
low, front, behind, right, left, in); some domain attributes;
and some axioms governing domain dynamics such as:
• Placing an object on top of an object with an irregular

surface results in an unstable object configuration.
• For any given object, removing all objects blocking the

view of its frontal face causes it to be not occluded.
• An object below another object cannot be picked up.

This knowledge may need to be revised over time, e.g., some
actions, axioms, and values of some attributes may be un-
known, or the robot may find that placing certain objects on
an object with an irregular surface does not cause instability.

3.1 Representation, Reasoning, Learning
We first describe the knowledge representation, reasoning,
and learning components.



Non-monotonic logical reasoning To represent and rea-
son with domain knowledge, we use CR-Prolog, an exten-
sion to Answer Set Prolog (ASP) that introduces consis-
tency restoring (CR) rules; we use the terms “CR-Prolog”
and “ASP” interchangeably. ASP is a declarative language
that represents recursive definitions, defaults, causal rela-
tions, and constructs that are difficult to express in classical
logic formalisms. ASP is based on the stable model seman-
tics, and encodes default negation and epistemic disjunction,
e.g., unlike “¬a”, which implies that “a is believed to be
false”, “not a” only implies “a is not believed to be true”.
Each literal can hence be true, false, or unknown. ASP sup-
ports non-monotonic logical reasoning, i.e., adding a state-
ment can reduce the set of inferences, which helps recover
from errors due to reasoning with incomplete knowledge.

A domain’s description in ASP comprises a system de-
scription D and a history H. D comprises a sorted sig-
nature Σ and axioms encoding the domain’s dynamics. In
our prior work that explored spatial relations for classifi-
cation tasks, Σ included basic sorts, e.g., object, robot,
size, relation, and surface; statics, i.e., domain attributes
that do not change over time, e.g., obj size(object, size) and
obj surface(obj, surface); and fluents, i.e., attributes whose
values can be changed, e.g., obj rel(above, A, B) implies
object A is above object B. Since the robot in this paper
also plans and executes physical actions that cause domain
changes, we first describe the expanded Σ and transition dia-
gram in action language ALd (Gelfond and Inclezan 2013),
and then translate this description to ASP statements. For
the RA domain, Σ now includes the sort step for temporal
reasoning, additional fluents such as in hand(robot, object),
actions such as pickup(robot, object) and putdown(robot, ob-
ject, location), and the relation holds(fluent, step) implying
that a particular fluent holds true at a particular timestep.
Axioms of the RA domain include ALd statements such as:

putdown(rob1, Ob1, Ob2) causes obj rel(on,Ob1, Ob2)

obj rel(above,A,B) if obj rel(below,B,A) (1)
impossible pickup(rob1, Ob1) if obj rel(below,Ob1, Ob2)

which encode a causal law, a state constraint, and an exe-
cutability condition respectively. Also, the domain’s history
H comprises records of fluents observed to be true or false,
and of the execution of an action, at a particular time step.
We also expand history to include initial state defaults.

The domain description is translated automatically to a
CR-Prolog program Π(D,H), which includes Σ and axioms
of D, inertia axioms, reality checks, closed world assump-
tions for actions, and observations, actions, and defaults
(with CR rules) from H; the program for the RA domain
is available online (Mota and Sridharan 2020b). Planning,
diagnostics, and inference can then be reduced to comput-
ing answer sets of Π (Gelfond and Kahl 2014). Any answer
set represents the beliefs describing a possible world; the
literals of fluents and statics at a time step represent the cor-
responding state. Non-monotonic logical reasoning allows
the robot to recover from incorrect inferences drawn due to
incomplete knowledge, noisy sensors, or a low threshold for
elevating probabilistic information to logic statements.

Classification: For any given image, the robot tries to esti-
mate the occlusion of objects and the stability of object con-
figurations using ASP-based reasoning. If an answer is not
found, or an incorrect answer is found (on labeled training
examples), the robot automatically extracts relevant regions
of interest (ROIs) from the corresponding image. Parame-
ters of Convolutional Neural Network (CNN) architectures
(Lenet (LeCun et al. 1998), AlexNet (Krizhevsky, Sutskever,
and Hinton 2012)) are tuned to map information from each
such ROI to the corresponding classification labels.

Decision tree induction: Images used to train the CNNs
are considered to contain previously unknown information
related to occlusion and stability. Image features and spa-
tial relations extracted from ROIs in each such image, along
with the known labels for occlusion and stability (during
training), are used to learn a decision tree summarizing the
corresponding state transitions. Next, branches of the tree
that satisfy minimal thresholds on purity at the leaf and have
sufficient support from labeled examples are used to con-
struct candidate axioms. Candidates are validated and those
without a minimal level of support on unseen examples are
removed. Also, we use an ensemble learning approach, re-
taining only axioms that are identified over a number of cy-
cles of learning and validation, and axioms are merged to
remove over-specifications. In addition, each axiom is asso-
ciated with a strength that decays exponentially over time if
the axiom is not used or learned again. Any axiom whose
strength falls below a threshold is removed.

Our previous work only learned state constraints. In this
paper, the robot also learns previously unknown causal laws
and executability conditions if there is any mismatch be-
tween the expected and observed state after an action is ex-
ecuted. Any expected but unobserved fluent literal indicates
missing executability condition(s), and any observed unex-
pected fluent literal suggests missing causal law(s).

1. To explore missing executability conditions, the robot
simulates the execution of the action (that caused the in-
consistency) in different initial states and stores the rel-
evant information from the initial state, executed action,
and a label indicating the presence or absence of incon-
sistency. Any fluent literal in the answer set or initial state
containing an object constant that occurs in the action,
with variables replacing ground terms, is relevant.

2. To explore a missing causal law, training samples are col-
lected as in Step 1, but the robot label is the unexpected
fluent literal from the resultant state.

3. Separate decision trees are created with the relevant infor-
mation from the initial state as the features (i.e., nodes)
and the output labels (presence/absence of inconsistency
for executability condition, unexpected fluent for causal
law). The root is the executed action.

Axioms are constructed from the decision trees as before.

3.2 Relational Description as Explanation
The interplay between representation, reasoning, and learn-
ing is used to provide relational descriptions of decisions,
beliefs, and the outcomes of hypothetical events.



Interaction interface and control loop Existing software
and a controlled (domain-specific) vocabulary are used to
parse human verbal (or text) input and to provide a response
when appropriate. Verbal input from a human is transcribed
into text based on the controlled vocabulary. This (or the
input) text is labeled using a part-of-speech (POS) tagger,
and normalized with the lemma list (Someya 1998) and re-
lated synonyms and antonyms from WordNet (Miller 1995).
The processed text helps identify the type of a desired goal
or a request for information. Any given goal is sent to the
ASP program for planning, with the robot executing the plan
(and replanning when needed) until the goal is achieved. To
address a request for information, the “Program Analyzer”
identifies the relevant axioms and literals in the existing
knowledge and inferred beliefs. These literals are inserted
into generic response templates based on the controlled vo-
cabulary, to provide textual or verbal responses.

Beliefs tracing A key capability of our architecture is to
infer the sequence of axioms whose application explains the
evolution of any given belief. Our approach adapts prior
work on constructing such “proof trees”, which used mono-
tonic logic statements to explain observations (Ferrand, Les-
saint, and Tessier 2006; Genesereth and Nilsson 1987), to
our non-monotonic logic formulation and traces the evolu-
tion of beliefs corresponding to fluents or actions.

1. Select axioms whose head matches the belief of interest.
2. Ground the literals in the body of each selected axiom and

check whether these are supported by the answer set.
3. Create a new branch in a proof tree (with target belief

as root) for each selected axiom supported by the answer
set, and store the axiom and the related supporting ground
literals in suitable nodes.

4. Repeats Steps 1-3 with the supporting ground literals in
Step 3 as target beliefs in Step 1, until all branches reach
a leaf node with no further supporting axioms.

The paths from the root to the leaves in these proof trees
help construct the desired explanations. As an example, for
the initial scenario in Figure 1b, if the goal is to place the red
cube on the orange cube, and the robot is asked (after plan
execution) why it did not pick up the purple cube at time
step 3, the corresponding proof tree would be as shown in
Figure 3; the path highlighted in green contains the informa-
tion needed to answer the question.

Program analyzer We illustrate our approach for con-
structing explanations (in the form of relational descriptions)
in the context of four types of explanatory questions or re-
quests. The first three were introduced as question types
to be considered by any explainable planning system (Fox,
Long, and Magazzeni 2017); we also consider a question
about the robot’s beliefs at any point in time.

1. Plan description When asked to describe a plan, the
robot parses the related answer set(s) and extract a se-
quence of actions such as occurs(action1, step1), ..., oc-
curs(actionN, stepN) to construct the response.

2. Action justification: Why action X at step I? To jus-
tify the execution of an action at a particular time step:

(a) For each action that occurred after time step I , the
robot examines relevant executability condition(s) and
identifies literal(s) that would prevent the action’s
execution at step I . For the goal of picking up
the orange block in Figure 1b, assume that the ex-
ecuted actions are occurs(pickup(robot, blue block),
0), occurs(putdown(robot, blue block), 1), and oc-
curs(pickup(robot, orange block), 2). If the focus is on
the first pickup action, an executability condition re-
lated to the second pickup action:

¬occurs(pickup(robot, A), I) ←
holds(obj rel(below,A,B), I)

is ground in the scene to obtain obj rel(below, or-
ange block, blue block) as a literal of interest.

(b) If any identified literal is in the answer set at the time
step of interest (0 in this example) and is absent (or its
negation is present) in the next step, it is a reason for
executing the action under consideration.

(c) The condition modified by the execution of the action
of interest is paired with the subsequent action to con-
struct the answer to the question. The question “Why
did you pick up the blue block at time step 0?”, receives
the answer “I had to pick up the orange block, and the
orange block was below the blue block”.

A similar approach is used to justify the selection of any
particular action in a plan that has not been executed.

3. Hypothetical actions: Why not action X at step I? For
questions about actions not selected for execution:

(a) The robot identifies executability conditions that have
the hypothetical action in the head, i.e., conditions that
prevent the action from being selected during planning.

(b) For each such executability condition, the robot checks
if literals in the body are satisfied by the corresponding
answer set. If yes, these literals form the answer.

Suppose action putdown(robot, blue block, table) oc-
curred at step 1 in Figure 1b. For the question “Why did
you not put the blue cube on the tennis ball at time step
1?”, the following executability condition is identified:

¬occurs(putdown(robot, A, B), I) ←
has surface(B, irregular)

which implies that an object cannot be placed on another
object with an irregular surface. The answer set states that
the tennis ball has an irregular surface and the robot an-
swers “Because the tennis ball has an irregular surface”.
This process uses the belief tracing approach.

4. Belief query: Why belief Y at step I? To explain any
particular belief, the robot uses the belief tracing approach
described earlier. The supporting axioms and relevant lit-
erals identified are used to construct the answer. For in-
stance, to explain the belief that object ob1 is unstable in
step I , the robot finds the support axiom:

¬holds(stable(ob1), I) ← holds(small base(ob1), I)



Support axiom

¬occurs(pickup(R,O1), I) ←
holds(relation(below,O1, O2), I).

Target belief

¬occurs(pickup(rob1, purple cube), 3).

Support axiom

¬occurs(pickup(R,O1), I) ←
holds(in hand(R,O2), I).

Extended belief

holds(relation(below, purple cube, blue cube), 3)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).

Extended belief

holds(relation(above, blue cube, purple cube), 3),
complement(above, below)

Support axiom

holds(relation(above,O1, O2), I) ←
holds(relation(on,O1, O2), I).
complement(above, below).

Extended belief

holds(relation(on, blue cube, purple cube), 3)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).
complement(above, below).

Extended belief

holds(relation(below, purple cube, blue cube), 3),
complement(below, above)

Support axiom

holds(relation(on,O1, O2), I + 1) ←
occurs(putdown(R,O1, O2), I), O1! = O2.

Grounded action

occurs(putdown(rob1, blue cube, purple cube), 2)

Support axiom

holds(relation(on,O1, O2), I) ←
holds(relation(above,O1, O2), I),
holds(relation(touch,O1, O2), I).

Extended belief

holds(relation(above, blue cube, purple cube), 3)

Figure 3: Example of belief tracing in action.

Assume that the current beliefs include that ob1 has a
small base. Tracing this belief identifies the axiom:

holds(small base(ob1), I) ←
holds(relation(below, ob2, ob1), I),

has size(ob2, small), has size(ob1, big)

Asking “why do you believe object ob1 is unstable at step
I?” would provide the answer “Because object ob2 is be-
low object ob1, ob2 is small, and ob1 is big”.

Robot platform As stated earlier, our work consider scene
understanding tasks and planning tasks. For robot experi-
ments, we use a Baxter manipulating objects on a tabletop.
The Baxter uses probabilistic algorithms to process inputs
from its cameras, e.g., to detect objects, their attributes, and
the spatial relations between them, from images. It also uses
probabilistic motion planning algorithms to execute primi-
tive manipulation actions, e.g., to grasp and pick up objects.
Observations obtained with a high probability are elevated
to literals with complete certainty in the ASP program.

4 Experimental Setup and Results
We present execution traces and quantitative results illus-
trating the ability to construct relational descriptions of de-
cisions, beliefs, and hypothetical events; and to learn causal
laws and executability conditions.

4.1 Experimental Setup
We experimentally evaluated the following hypotheses:

H1 : our architecture enables the robot to accurately learn pre-
viously unknown domain axioms;

H2 : reasoning with incrementally learned axioms improves
the quality of plans generated;

H3 : the beliefs tracing approach accurately retrieves the sup-
porting axioms associated with any belief; and

H4 : exploiting the links between reasoning and learning im-
proves the accuracy of the explanatory descriptions.

These hypotheses and our architecture’s capabilities were
evaluated in the context of the four types of requests de-



scribed earlier, but the methodology can be adapted for other
types of requests. Plan quality was measured in terms of the
ability to compute minimal and correct plans. The quality of
an explanation was measured in terms of precision and re-
call of its literals in comparison with the expected (“ground
truth”) response obtained in a semi-supervised manner based
on manual input and automatically selected relevant literals.

Experimental trials considered images from the robot’s
camera and simulated images. Real world images contained
5 − 7 objects of different colors, textures, shapes, and sizes
in the RA domain (Example 1). The objects included cubes,
a pig, a capsicum, a tennis ball, an apple, an orange, and
a pot. These objects were either stacked on each other or
spread on the table—see Figure 1b. A total of 20 configu-
rations were created, each with five different goals for plan-
ning and four different questions for each plan, resulting in
100 plans and 400 questions. Since it is time-consuming and
difficult to run many trials on robots, we also used a real-
time physics engine (Bullet) to create 20 simulated images,
each with 7 − 9 objects (3 − 5 stacked and the remain-
ing on a flat surface). Objects included cylinders, spheres,
cubes, a duck, and five household objects from the Yale-
CMU-Berkeley dataset (apple, pitcher, mustard bottle, mug,
and box of crackers). We once again considered five differ-
ent goals for planning and four different questions for each
plan, resulting in (once again) 100 plans and 400 questions.

To explore the interplay between reasoning and learning,
we focused on the effect of learned knowledge on planning
and constructing explanations. We ran experiments with
and without some learned axioms in the knowledge base.
Learned axioms were revised over time in our architecture,
whereas these axioms were not used by the baselines for
planning and explanation generation. During planning, we
measured the number of optimal, sub-optimal, and incorrect
plans, and the planning time. An optimal plan is a minimal
plan that achieves the goal; a sub-optimal plan requires more
than the minimum number of steps and/or has to assume
an unnecessary exception to defaults; and an incorrect plan
leads to undesirable outcomes and fails to achieve the goal.

To test hypothesis H1 we removed five axioms (three ex-
ecutability conditions and two causal laws) from the agent’s
knowledge, and ran the learning algorithm 20 times. The
robot executed actions to learn all the missing axioms each
time. Each run stops if the robot executes a number of ac-
tions without detecting any inconsistency, or if a maximum
number of decision trees are constructed. The overall preci-
sion and recall are then computed.

4.2 Execution Traces
The following execution traces illustrate our approach to
construct relational descriptions explaining the decisions,
beliefs, and the outcomes of hypothetical actions.

Execution Example 1 [Plans, actions, and beliefs]
Consider a scene with objects as shown in Figure 4. The
robot’s goal is to achieve a state in which the pitcher is on
the red block, i.e., holds(relation(on, pitcher, red block), I).
The robot answers the following questions after executing a
plan and successfully achieving the assigned goal:

Figure 4: Simulated scene for the execution examples.

• Human: “Please describe the plan.”
Baxter: “I picked up the green can. I put the green can
on the table. I picked up the white block. I put the white
block on the green can. I picked up the pitcher. I put the
pitcher on the red block.”

• The human may ask the robot to justify a particular action.
Human: “Why did you pick up the green can at step 0?”
Baxter: “Because I had to pick up the white block, and it
was below the green can.”

• The human may ask about actions not chosen.
Human: “Why did you not put white block on the mug?”
Baxter: “Because the mug has irregular surface.” Since
there was no reference to a particular time step, the robot
responds based on the single instance (in the executed
plan) of putting the white block on the mug.

• The human may also ask about particular beliefs.
Human: “Why did you believe that the white block was
below the green can in the initial state?”
Baxter: “Because I observed the white block below the
green can at step zero.”

Execution Example 2 [Beliefs tracing and explanation]
We continue with our previous example:
• Human: “Why did you not pick white block at step 0?”

The robot uses the belief tracing approach to construct
a proof tree with ¬ occurs(pickup(rob1, white block), 0)
as the root. For each axiom in which this ground literal
matches the head, it checks if its body is supported by the
answer set. If yes, ground literals in the body are used to
expand the tree. According to the third axiom in Equa-
tion 1, one of the extended beliefs is holds(obj rel(below,
white block, green can), 0). Similar searches are repeated
until no further supporting axioms are found. In our
example, the statement holds(relation(on, white block,
green can), 0) is output as the leaf of the proof tree, and
the agent’s answer to the question is:

• Robot: “Because I observed the green can on the white
block at step 0.”

Execution Example 3 [Learning and explanation]
In some situations, the robot may not possess the knowledge
required to address the human request. Continuing with the
previous example, the human may ask:



• Human: “Why did you not pick up green can at step 5?”
By creating a proof tree, the answer is found:
Robot: “Because white block was on the green can.”
The human may need further details and ask:
Human: “Why did you believe the white block was on
the green can?”
To answer this question the robot has to know the causal
relation between action putdown and the spatial relation
on—first axiom in Equation 1. After the robot learns this
causal law, it produces the correct answer:
Robot: “Because I put the white block on the green can
at step 4.”

This example illustrates the benefit of integrating reasoning
and learning to justify particular beliefs.

Overall, these (and other) examples show the ability to focus
on relevant knowledge, incrementally revise axioms, trace
relevant beliefs, and identify attributes and actions relevant
to a given scenario. They also support hypothesis H3.

4.3 Experimental Results
The first set of experiments evaluated H1. We removed five
axioms (two causal laws and three executability conditions)
from the robot’s knowledge, and ran the learning algorithm
20 times. We measured the precision and recall for the miss-
ing axioms in each run, and table 1 summarizes the results.
The row labeled “Strict” provides results when any variation
in the target axiom is considered an error. In this case, even
over-specified axioms, i.e., axioms that have some additional
irrelevant literals, are considered to be incorrect. Equation 2
shows one example of such an axiom in which the second
literal in the body is irrelevant. The row labeled “Relaxed”
reports results when over-specifications are not considered
errors; the high precision and recall support H1.

Table 1: Precision and recall for learning previously un-
known axioms using decision tree induction.

Missing Axioms Precision Recall
Strict 69.2% 78.3%

Relaxed 96% 95.1%

¬holds(in hand(R1, O1), I + 1) ←
occurs(putdown(R1, O1, O2), I),

¬holds(in hand(R1, O5), I). (2)

The second set of experiments was designed to evaluate hy-
pothesis H2.

1. As stated earlier, 20 initial object configurations were cre-
ated (similar to Figure 1a). The Baxter automatically ex-
tracted information (e.g., attributes, spatial relations) from
images corresponding to top and frontal views (cameras
on the left and right grippers), and encoded it in the ASP
program as the initial state.

2. For each initial state, five goals were randomly chosen and
encoded in the ASP program. The robot reasoned with the
existing knowledge to create plans for these 100 combi-
nations (20 initial states, five goals).

Table 2: Number of plans and planning time with the learned
axioms expressed as a fraction of the values without the
learned axioms.

Ratio (with/without)
Measures Real scenes Simulated scenes

Number of steps 1.17 1.21
Number of plans 0.7 1.1

Planning time 0.87 1.08

Table 3: Number of optimal, sub-optimal, and incorrect
plans expressed as a fraction of the total number of plans.
Reasoning with the learned axioms improves performance.

Real Scenes Simulated Scenes
Plans Without With Without With

Optimal 0.33 0.89 0.13 0.24
Sub-optimal 0.12 0.11 0.44 0.76

Incorrect 0.55 0 0.43 0

3. The plans were evaluated in terms of the number of opti-
mal, sub-optimal and incorrect plans, and planning time.

4. Trials were repeated with and without learned axioms,
and for the simulated images.

Since the number of plans and planning time vary depending
on the initial conditions and the goal, we conducted paired
trials with and without the learned axioms included in the
ASP program used for reasoning. The initial conditions and
goal were identical in each paired trial, but differed between
paired trials. Then, we expressed the number of plans and
the planning time with the learned axioms as a fraction of
the corresponding values obtained by reasoning without the
learned axioms. The average of these fractions over all the
trials is reported in Table 2. We also computed the number
of optimal, sub-optimal, and incorrect plans in each trial as
a fraction of the total number of plans; we did this with and
without using the learned axioms for reasoning, and the av-
erage over all trials is summarized in Table 3.

These results indicate that for images of real scenes, using
the learned axioms for reasoning significantly reduced the
search space, resulting in a much smaller number of plans
and a substantial reduction in the planning time. The use of
the learned axioms does not seem to make any significant
difference with the simulated scenes. This is understandable
because simulated images have more objects with several
of them being small objects. This increases the number of
possible plans to achieve any given goal. In addition, when
the robot used the learned axioms for reasoning, it reduced
the number of sub-optimal plans and eliminated all incor-
rect plans. Also, almost every sub-optimal plan was created
when the corresponding goal could not be achieved without
creating an exception to a default. Without the learned ax-
ioms, a larger fraction of the plans are sub-optimal or incor-
rect. Note that the number of suboptimal plans is higher with
simulated scenes that have more objects to consider. These
results support hypothesis H2 but also indicate the need to
explore complex scenes further.

The third set of experiments was designed as follows to eval-



Table 4: (Real scenes) Precision and recall of retrieving rel-
evant literals for constructing answers to questions with and
without using the learned axioms for reasoning. Using the
learned axioms significantly improves the ability to provide
accurate explanations.

Precision Recall
Query Type Without With Without With

Plan description 74.94% 100% 63.25% 100%
Why X? 72.22% 94.0% 65.0% 94.0%

Why not X? 100% 95.92% 68.89% 100%
Belief 95.74% 100% 95.74% 100%

Table 5: (Simulated scenes) Precision and recall of retriev-
ing relevant literals for constructing answers to questions
with and without reasoning with learned axioms. Using the
learned axioms significantly improves the ability to provide
accurate explanations.

Precision Recall
Query Type Without With Without With

Plan description 71.85% 100% 59.39% 100%
Why X? 66.48% 95.0% 58.5% 95.0%

Why not X? 86.79% 95.24% 63.01% 100%
Belief 94.55% 100% 91.23% 100%

uate hypothesis H4:

1. For each of the 100 combinations (20 configurations, five
goals) from the first set of experiments with real-world
data, we considered knowledge bases with and without
the learned axioms and had the robot compute plans to
achieve the goals.

2. The robot had to describe the plan and justify the choice
of a particular action (chosen randomly) in the plan. Then,
one parameter of the chosen action was changed ran-
domly to pose a question about why this new action could
not be applied. Finally, a belief related to the previous two
questions had to be justified.

3. The literals present in the answers were compared against
the expected literals in the “ground truth” response, with
the average precision and recall scores reported in Table 4.

4. We also performed these experiments with simulated im-
ages, and the results are summarized in Table 5.

Tables 4, 5 show that when the learned axioms were used
for reasoning, the precision and recall of relevant literals
(for constructing the explanation) were higher than when the
learned axioms were not included. The improvement in per-
formance is particularly pronounced when the robot has to
answer questions about actions that it has not actually exe-
cuted. The precision and recall rates were reasonable even
when the learned axioms were not included; this is because
not all the learned axioms are needed to accurately answer
each explanatory question. When the learned axioms were
used for reasoning, errors were very rare and corresponded
to some additional literals being included in the answer (i.e.,
over-specified explanations). In addition, when we specifi-
cally removed axioms related to the goal under considera-

tion, precision and recall values were much lower. Further-
more, there was noise in both sensing and actuation, espe-
cially in the robot experiments. For instance, recognition of
spatial relations, learning of constraints, and manipulation
have approximate error rates of 15%, 5− 10%, and 15% re-
spectively. Experimental results thus indicate that coupling
reasoning and learning to inform and guide each other en-
ables the robot to provide accurate relational descriptions of
decisions, beliefs, and the outcomes of hypothetical actions.
This supports hypothesis H4. Additional examples of im-
ages, questions, and answers, are in our open source reposi-
tory (Mota and Sridharan 2020b).

5 Conclusions
This paper described an approach inspired by cognitive sys-
tems and knowledge representation tools to enable an in-
tegrated robot system to explain its decisions, beliefs, and
the outcomes of hypothetical actions. These explanations
are constructed on-demand in the form of descriptions of
relations between relevant objects, actions, and domain at-
tributes. We have implemented this approach in an archi-
tecture that combines the complementary strengths of non-
monotonic logical reasoning with incomplete commonsense
domain knowledge, deep learning, and decision tree induc-
tion. In the context of some scene understanding and plan-
ning tasks performed in simulation and a physical robot, we
have demonstrated that our architecture exploits the inter-
play between knowledge-based reasoning and data-driven
learning. It automatically identifies and reasons with the rel-
evant information to efficiently construct the desired expla-
nations, with both the planning and explanation generation
performance improving when previously unknown axioms
are learned and used for subsequent reasoning.

Our architecture opens up multiple avenues for further re-
search. First, we will explore more complex domains, tasks,
and explanations, reasoning with relevant knowledge at dif-
ferent tightly-coupled resolutions for scalability (Sridharan
et al. 2019). We are specifically interested in exploring sce-
narios in which there is ambiguity in the questions (e.g., it is
unclear which of two occurrences of the pickup action the
human is referring to), or the explanation is needed at a dif-
ferent level of abstraction, specificity, or verbosity. We will
do so by building on a related theory of explanations (Srid-
haran and Meadows 2019). Second, we will use our architec-
ture to better understand the behavior of deep networks. The
key advantage of using our architecture is that it uses rea-
soning to guide learning. Unlike “end to end” data-driven
deep learning methods, our architecture uses reasoning to
trigger learning only when existing knowledge is insuffi-
cient to perform the desired task(s). The long-term objec-
tive is to develop an architecture that exploits the comple-
mentary strengths of knowledge-based reasoning and data-
driven learning for the reliable and efficient operation of
robots in complex, dynamic domains.
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