
A JavaScript Framework for Crowdsourced Human-Robot Interaction
Experiments: RemoteHRI

Finley Lau,1 * Deepak Gopinath, 2,3 * Brenna D. Argall1,2,3

* Equal contribution
1Department of Computer Science, Northwestern University, Evanston, Illinois

2Department of Mechanical Engineering, Northwestern University, Evanston, Illinois
3Shirley Ryan AbilityLab, Chicago, Illinois

finleylau2021@u.northwestern.edu, deepakgopinath@u.northwestern.edu, brenna.argall@northwestern.edu

Abstract

In this paper, we present RemoteHRI, a JavaScript (JS) soft-
ware framework for conducting Human-Robot Interaction
(HRI) experiments in a web browser. Built with HRI re-
searchers in mind, RemoteHRI includes a flexible set of soft-
ware tools that allows for rapid prototyping and quick de-
ployment of a wide range of laboratory-like experiments that
can be run online. RemoteHRI uses the state-of-the-art Re-
actJS1 framework to build standard HRI stimulus environ-
ments such as grid worlds, differential drive cars, and robotic
arms. As a result, the researcher can solely focus on the
experimental design thereby saving valuable time and ef-
fort. Code for RemoteHRI is available at https://github.com/
argallab/RemoteHRI.

1 Introduction
Evaluating progress in science and engineering heavily de-
pends on proper experimentation protocols. In the domain
of Human-Robot Interaction (HRI), proper experiments are
needed both to understand the human decision-making pro-
cess while interacting with robots and to evaluate the success
of robotics autonomy algorithms in interacting with humans
and other entities.

In an ideal situation, researchers conduct HRI experi-
ments with real robotic systems. This provides researchers
with rich data that encodes the sensing and actuating com-
plexities of robot operation in the real world. However, de-
signing and conducting HRI experiments on real robotic sys-
tems come with a great deal of challenges, especially in the
academic setting.

First, real robotic systems are expensive, and academic
labs rarely own multiple robots of the same type. This dras-
tically limits the number of studies that could be run in par-
allel, thereby making data collection extremely slow. Sec-
ond, subject recruitment for academic studies can suffer
from biases due to lack of diversity in the recruitment pool.
Third, in-person subject studies typically require researchers
to be in close contact with the subjects. However, in light
of COVID-19, academic researchers are now required to

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://reactjs.org/

maintain stricter social distancing protocols, rendering an in-
person study practically impossible. Particularly, in the sub-
domain of assistive robotics, the end-user population (peo-
ple with motor-impairments as a result of trauma or neuro-
degenerative disease) typically belongs to a high-risk group.
Therefore, participation in an in-person study can pose sig-
nificant health risks.

By contrast, simulation-based experiments are less expen-
sive and can enhance the usefulness of in-person studies. By
conducting experiments online, researchers can parallelize
data collection and achieve greater diversity in the recruit-
ment pool. Furthermore, online settings remove the need for
in-person supervision, alleviating the health risks of being
in close proximity to others. Exploratory HRI studies con-
ducted in a simulated environment can also provide strong
priors, in terms of baseline models for human behavior and
initial evaluation of robotics algorithms. These studies ad-
ditionally inform resourceful design of a real-world experi-
ment. Performing human subject studies in a simulated en-
vironment is not novel. For example, jsPsych (De Leeuw
2015) is a popular JavaScript library used by researchers
in the field of psychology to perform simple online behav-
ioral experiments. However, the stimulus plugins available
in jsPsych do not cover the full space of rich and com-
plex stimuli needed for HRI. The field of HRI research cur-
rently lacks a comprehensive software framework for con-
ducting simulation-based experiments and relies on one-off
solutions developed for specific projects, leading to wasted
time and repeated effort. Although primarily used for rein-
forcement learning research, OpenAI’s Gym (Brockman et
al. 2016) provides a suite of simulated environments that are
widely used for HRI experiments (Schaff and Walter 2020;
Broad et al. 2020); however, the JS interface needed for
crowd-sourced online studies is still under development.

RemoteHRI provides HRI researchers a set of tools to
design and conduct common HRI studies in a seamless
manner. The framework is designed with the researcher in
mind, specifically focusing on ease of use and rapid proto-
typing. RemoteHRI derives its inspiration from frameworks
such as jsPsych and supports flexible experiment design, an
easy-to-use researcher interface, and prepackaged standard
HRI stimulus environments. RemoteHRI uses ReactJS for



client-side rendering, which allows for increased flexibility,
speed, and ease of development through its management of
state and structural organization of components (groups of
elements displayed on the screen) as compared to vanilla
JavaScript.

The key features of RemoteHRI are as follows:
• Researcher-Centric Design: RemoteHRI was built with

researchers from different backgrounds and programming
experience in mind and provides a low entry point for
easily prototyping and building HRI experiments, without
having to develop the client-side application (which typ-
ically requires researchers to learn to use graphics APIs,
and physics libraries) or the server-side application.

• Modular/Extensible: RemoteHRI is highly modular in
that the different applications of the framework operate
independently of each other and may be replaced with an
equivalent module. For example, the RemoteHRI server
could be replaced with a custom-built server without af-
fecting the client-side application. Furthermore, imple-
mentation of different stimulus types is similar and there-
fore the framework can be easily extended to work with
new types of stimuli.

• Unified Researcher Interface: Regardless of the spe-
cific experimental domain or design choice, the researcher
specifies experimental flow through a single JSON file,
which we refer to as Experiment.json (discussed more in
detail in Section 4). RemoteHRI provides a GUI inter-
face and a set of utility functions allowing researchers to
quickly generate Experiment.json.

• Plug and Play: RemoteHRI experiments are completely
controlled by the Experiment.json file. By specifying the
stimuli and their respective properties used in the experi-
ment in Experiment.json, researchers can create entire ex-
periments without changing the client-side application.
In Section 2 we describe a typical HRI experiment de-

sign and how it informs some of the design choices for Re-
moteHRI. The main software modules that constitute Re-
moteHRI are described in Section 3. The researcher inter-
face for experiment specification is presented in Section 4,
followed by conclusions and future work in Section 5.

2 HRI Experiment Design
A quick analysis of different types of experiments conducted
in the field of HRI reveals various commonalities in ex-
perimental design (Ghassemi et al. 2019; Breazeal et al.
2005; Javaremi, Young, and Argall 2019; Tsui et al. 2013;
Gopinath, Jain, and Argall 2016). We identity four different
phases in the majority of these experiments:
• Consenting Phase: This is common in any experiment

done in an academic setting. During this phase, the re-
searcher describes the experiment in detail to the sub-
ject (either in writing or verbally). After evaluating the
risks and benefits of the experiment, the subject chooses
whether to participate in the study. During this phase,
researchers typically also collect non-identifiable demo-
graphic and subject-specific information, such as age,
gender, and race.

• Training Phase: In the training phase, the participant gets
familiarized with the experimental setup. This phase also
helps researchers establish a baseline performance, which
could be a useful measure in data analysis.

• Testing Phase: The testing phase typically consists of
multiple blocks of experimental trials under different ex-
perimental conditions. This phase may serve to collect
data (for example, human teleoperation data of robotic
manipulators to build data-driven computational models
of human decision making) or to evaluate an algorithm’s
performance (for example, evaluation of a shared control
robot policy for assistive robotic manipulators).

• Survey Phase: The participant is presented with ques-
tions related to their experience of interacting with the
robotic system.
Note that in a given experiment, possibly with the ex-

ception of the consenting phase, phases may occur multi-
ple times in no particular order. RemoteHRI recognizes the
need for such combinatorial flexibility in experimental de-
sign and offers researchers an easy approach to specify any
experimental flow.

3 Framework Modules
RemoteHRI consists of two main software modules: 1) the
client-side application and 2) the server-side application.
Participants interact with the client-side application in their
browsers during an experiment, while the server-side appli-
cation ensures the proper delivery of experiment content. In
the subsequent subsections, we will describe the details of
the client-side and the server-side applications.

3.1 Client
The client-side application is responsible for presenting the
stimulus for each trial during the course of the experiment.
In RemoteHRI we consider two main classes of stimuli:

• Passive: A passive stimulus is an environment in which a
participant ‘passively’ observes the presented stimuli (au-
dio/video/text). For example, participants could be shown
images of two different humanoid robots and asked which
one has more human-like features. Participant responses
to a passive stimulus depend on the stimulus type and can
take many forms such as single answer/multiple choice,
multiple answer/multiple choice, 5- or 7-point Likert
scale, or free text response. RemoteHRI provides a suite
of common passive stimuli such as videos, recordings, im-
age and text displays, surveys/questionnaires, et cetera.

• Active: An active stimulus is an environment in which
there is at least one agent that is actuated by the partic-
ipant via some form of control input, by an autonomous
controller, or both. We refer to a stimulus containing only
a human-controlled agent as H-Active and a stimulus con-
taining only an autonomy-controlled agent as A-Active.
A stimulus environment containing agent(s) controlled by
both a human and an autonomous agent is referred to as
HA-Active. An active stimulus environment may have one
or more active agents. RemoteHRI includes implementa-
tions of some of the standard active environments used in



Figure 1: Examples of active stimuli in RemoteHRI. Left: DiscreteGridWorld stimulus with static obstacles. Middle: Differ-
entialDriveRobot stimulus with static obstacles for navigation tasks. Right: RoboticArm stimulus for reaching tasks. The goal
states are indicated in green.

simulated HRI experiments, such as discrete grid-worlds,
differential-drive robots, and planar robotic arms. The im-
plementation of these standard environments is shown in
Figure 1.

Environments can also be classified based on whether an
active agent is operating in a static (S-Env) or dynamic (D-
Env) environment. For example, a human-controlled point
robot operating in a discrete grid-world with moving obsta-
cles is an H-Active/D-Env stimulus whereas an autonomy-
controlled planar robotic arm performing reaching motion
towards a fixed goal location is an A-Active/S-Env stimulus.

RemoteHRI comes with standard implementations of
planning and control algorithms to autonomously control
agents in an active environment. Similarly the framework
also implements simple algorithms such as random walks
and periodic motion for the control of dynamic aspects of
the environment. The researcher can readily activate any of
these implemented algorithms in Experiment.json.
Implementation details: The ReactJS client-side applica-
tion consists of a modular component structure allowing
variable display of stimuli on the screen (Figure 2).

An experiment is rendered through a React component
called Content, which represents the space on the browser
screen belonging to the experiment’s content. Depending on
the specification in Experiment.json, this content can take
the form of various stimulus components, such as Discrete-
GridWorld, DifferentialDriveRobot, or RoboticArm. Each of
these stimulus components contains the same child compo-
nent structure (Header/Instructions, StimulusView, Continu-
ation), providing for consistency and ease of implementation
for new stimulus types. The header/instructions component
specifies each trial’s title and instructions for the participant.
The stimulus view renders the specified stimulus, such as
the grid world, differential-drive robot world, or robotic arm
world. The continuation component specifies how the par-
ticipant may proceed to the next trial after completion of a
trial, such as by clicking a button or pressing any key.

Since the client-side application is only involved with tak-
ing a JSON specification for a trial and rendering the appro-

priate stimulus on the screen, all experimental flow logic can
be abstracted to the server application. This allows for the
modular plug-and-play feature of RemoteHRI, as researchers
can easily use the provided client-side application without
modification to render their experiments.

Figure 2: Diagram showing structural rendering layout of
the client-side application.

3.2 Server
The experiment flow for each participant in an experiment is
managed by the server application. It is built using the Nodus
Ponens framework, a light, full-stack framework for running
high-level reasoning and cognitive science experiments in
Node.js.2

The key features of the RemoteHRI server are as follows:

2Code available at https://www.npmjs.com/package/nodus-
ponens. Designed by Sangeet Khemlani. Distributed under the Cre-
ative Commons License.



Figure 3: Diagram showing communication between the
client-side application and the server. 1) Client sends ini-
tial request to server for experiment name. 2) Client sends
request to start experiment. 3) Client sends request for first
trial. 4) Server responds with JSON data for first trial. 5)
Client sends collected trial data back to server, along with
request for next trial.

• Experimental Flow Management: By using the Exper-
iment.json specification, the server is able to construct a
list of stimuli trials to present to each participant. It han-
dles randomization and construction of the unique order
in which trials are presented to a particular participant. In
addition to assigning a unique ID to each participant, it
also keeps track of where participants are in the experi-
ment in order to correctly serve subsequent trials.

• Data Collection: The server collects both incomplete and
complete data on a trial-per-trial basis. After a participant
finishes a trial, the server stores the collected data from
the client-side application into a JSON file containing all
information collected from the current trial as well as any
previous ones.

• Session Management: The server keeps track of a partici-
pant’s experiment data through browser sessions. Notably,
this allows for participants to reconnect to an experiment
and continue from where they left off, if a researcher spec-
ifies that this is allowed.

4 Experiment Specification
Experiment.json: This JSON file completely specifies an
experiment. It contains information about experiment struc-
ture as well as trial specifications.

• Experiment Structure: RemoteHRI provides functional-
ity to group trials through block-level organization. It also
exposes boolean flags to specify whether blocks should be
shuffled as well as whether trials within a block should be
shuffled. It also allows for specification of trials (such as
pre/post block survey questionnaires) preceding and fol-
lowing a trial block, regardless of whether the trials inside
of the block are shuffled.

• Trial Specifications: Experiment.json contains informa-
tion relevant to rendering the starting state of the stimulus
presented in each trial. For example, in a grid world stim-
ulus, Experiment.json would specify the width and height
of the world and the starting positions of all objects in the
world (Figure 4). Each stimulus type has its own JSON
schema to completely specify its state.

Experiment.json can be generated by any means to cre-
ate a JSON file. This can include manually writing a file, a
GUI-based tool provided through RemoteHRI, or scripts in
any programming language that can write to a JSON file.
This allows for flexibility and scalability for the researcher
to create an experiment, regardless of their programming ex-
perience or the scale of their experiment.

The Experiment.json interface also allows for minimal
configuration when extending RemoteHRI with a new stim-
ulus type. Due to the freedom in schema provided by JSON
files, a researcher only needs to implement the client-side
rendering of their new stimulus using ReactJS and decide
what properties may be specified in Experiment.json.

Figure 4: Snapshot of a possible Experiment.json specifica-
tion for a grid-world experiment. The configuration speci-
fied corresponds to the DiscreteGridWorld in Figure 1.

5 Conclusions and Future Work

In this paper, we presented RemoteHRI, a JavaScript frame-
work for designing and deploying crowdsourced HRI exper-
iments online. We anticipate that RemoteHRI can also help
in lowering the barrier to entry for HRI research and increase
equity in terms of broadened participation from underrep-
resented HRI researchers. Future extensions of RemoteHRI
will include functionality to use custom input devices such
as joysticks and sip-and-puff (Farnet, McWilliams, and
Stutz 2008) in addition to standard keyboard and mouse
input. This specifically targets the subdomain of assistive
robotics in which studies with motor-impaired subjects are
of paramount importance for the successful adoption of as-
sistive technologies. Future iterations of the framework will
also include 3D simulated environments.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant CNS 1544741. Any opin-
ions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessar-
ily reflect the views of the aforementioned institutions.



References
Breazeal, C.; Kidd, C. D.; Thomaz, A. L.; Hoffman, G.; and
Berlin, M. 2005. Effects of nonverbal communication on ef-
ficiency and robustness in human-robot teamwork. In 2005
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 708–713. IEEE.
Broad, A.; Abraham, I.; Murphey, T.; and Argall, B. 2020.
Data-driven koopman operators for model-based shared
control of human–machine systems. The International Jour-
nal of Robotics Research 0278364920921935.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
gym. arXiv preprint arXiv:1606.01540.
De Leeuw, J. R. 2015. jsPsych: A JavaScript ibrary for
creating behavioral experiments in a web browser. Behavior
Research Methods 47(1):1–12.
Farnet, M. G.; McWilliams, H. R.; and Stutz, J. J. 2008. Sip
and puff mouse. US Patent 7,412,891.
Ghassemi, M.; Triandafilou, K.; Barry, A.; Stoykov, M. E.;
Roth, E.; Mussa-Ivaldi, F. A.; Kamper, D. G.; and Ran-
ganathan, R. 2019. Development of an EMG-controlled
serious game for rehabilitation. IEEE Transactions on Neu-
ral Systems and Rehabilitation Engineering 27(2):283–292.
Gopinath, D.; Jain, S.; and Argall, B. D. 2016. Human-
in-the-loop optimization of shared autonomy in assistive
robotics. IEEE Robotics and Automation Letters 2(1):247–
254.
Javaremi, M. N.; Young, M.; and Argall, B. D. 2019. Inter-
face operation and implications for shared-control assistive
robots. In 2019 IEEE 16th International Conference on Re-
habilitation Robotics (ICORR), 232–239. IEEE.
Schaff, C., and Walter, M. R. 2020. Residual policy learning
for shared autonomy. arXiv preprint arXiv:2004.05097.
Tsui, K. M.; Flynn, K.; McHugh, A.; Yanco, H. A.; and Kon-
tak, D. 2013. Designing speech-based interfaces for telep-
resence robots for people with disabilities. In 2013 IEEE
13th International Conference on Rehabilitation Robotics
(ICORR), 1–8. IEEE.


