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Abstract

Explainable artificial intelligence (XAI) can help foster trust
in and acceptance of intelligent and autonomous systems.
Moreover, understanding the motivation for an agent’s be-
havior results in better and more successful collaborations
between robots and humans. However, not only can humans
benefit from a robot’s explanation but the robot itself can also
benefit from explanations given to him. Currently, most atten-
tion is paid to explaining deep neural networks and black-box
models. However, a lot of these approaches are not applicable
to humanoid robots. Therefore, in this position paper, current
problems with adapting XAI methods to explainable neuro-
robotics are described. Furthermore, NICO, an open-source
humanoid robot platform, is introduced and how the interac-
tion of intrinsic explanations by the robot itself and extrin-
sic explanations provided by the environment enable efficient
robotic behavior.

Introduction
Neuro-inspired robots make use of connectionist models to
tackle problems that are not easily solvable with symbolic
methods and the success of complex deep neural networks
(DNN) over the past decade made it possible for agents
to acquire robust behavior through learning. Such flexible
adaptation to problems, for example learning to distinguish
objects just by touching them (Kerzel et al. 2019), is still im-
possible to achieve with symbolic representations. However,
this advance in performance thanks to DNNs has disadvan-
tages regarding explainable artificial intelligence since deep
learning models can essentially be considered as black-box
models to the human interpreter. The sub-symbolic nature
of their distributed representations is not inherently explain-
able, i.e. incomprehensible to a human observer and needs
post hoc explanations. In contrast, symbolic approaches like
first-order logic or planners are inherently explainable but
largely unable to deal with certain problems that are crucial
for effective robotic intelligence like the efficient perception
and robust learning of complex environments.

Explanations that can be produced from the inner states
and algorithms of an agent, i.e. that can be produced from
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within the agent, we describe as intrinsic explanations. For
instance, explaining a classification decision which is done
by a perceptive module, with a description of its relevant
features. Almost all existing literature on XAI falls within
this category. An autonomous robot, however, is situated in
an environment. Through interaction with it, the robot can
obtain information about prior uncertainties or knowledge
gaps. Therefore, explanations that the robot receives from an
external source in its environment are extrinsic explanations.

Currently, explainable human-robot interaction (HRI)
faces two major obstacles. Neural networks constitute an
irreplaceable part of modern robotics. However, the devel-
opment of successful explanation methods of deep archi-
tectures is still in its infancy, and the intrinsic explanations
that an agent can deliver are respectively limited, especially
regarding the constraints of HRI contexts. The generation
of an explanation is not sufficient if the communication to
the receiver fails due to unintelligible information represen-
tation or a lack of information. The low-level explanations
though feature visualization provided by a lot of XAI meth-
ods rarely enable the end-user to interpret the agent’s behav-
ior unambiguously. Therefore, we will review a few promis-
ing techniques and their limitations for explainable robots.
Additionally, the communication between robots and hu-
mans narrows the choice of modalities that can be used to
explain which renders numerous explainability methods un-
usable without modification.

Neural networks offer robots the possibility to adapt and
learn from extrinsic explanations that they receive from the
environment, in an interactive way. The robot can learn how
to shape its intrinsic explanations to make them more suit-
able for its audience. XAI methods for HRI should be ex-
tended to an interactive framework between intrinsic and ex-
trinsic explanations to fully account for the nature of such
situations.

XAI for Neurorobotics
Methods for explaining data-driven models are largely
treated separately from methods for explaining goal-driven
agents (for reviews of the former, cf. (Barredo Arrieta et al.
2020), for the latter, cf. (Anjomshoae et al. 2019)).

State-of-the-art neuro-cognitive humanoid robots, like the



NICO (see figure 1), are best realized in a multimodal neuro-
symbolic hybrid fashion (Wermter, Griffiths, and Hein-
rich 2017). Symbolic processes represent high-level cogni-
tive concepts like beliefs, goals, and intentions, which are
grounded in and make use of neural architectures for com-
plex cognitive processes like perception. Still, despite this
interconnection, the explanation methods are conception-
ally kept apart from each other, instead of being integrated.
The PeCoX framework separates the explanation of hybrid
agents into two submodules, the cognitive XAI for symbolic
and the perceptive XAI for sub-symbolic processes (Neer-
incx et al. 2018). Both are detached from one another, as
they need different techniques. The explanation of the cog-
nitive parts is straightforward. Due to their symbolic nature,
they are inherently interpretable so that goals, beliefs, and
intentions can often simply be externalized by e.g. verbal
communication. On the other hand, the post hoc explanation
of conventional DNNs is much less straightforward, with a
diverse research landscape.

The majority of explanation techniques for deep neu-
ral networks try to find and visualize relevant features in
the input space that are responsible for classification (Mon-
tavon, Samek, and Müller 2018; Samek and Müller 2019;
Lapuschkin et al. 2019). The approaches can be divided into
black-box methods that do not assume specific underlying
structures and are only concerned with input-output pair-
ings, e.g. local interpretable model-agnostic explanations
(LIME) or meaningful perturbations (Ribeiro, Singh, and
Guestrin 2016; Fong and Vedaldi 2017), and methods that
take into account the distributed hierarchical architecture
and propagation mechanism of neural networks, like Grad-
CAM or layerwise relevance propagation (LRP) (Selvaraju
et al. 2017; Montavon et al. 2019). Grad-CAM, for example,
analyses the gradients in the classification layer of convolu-
tional neural networks and uses the gradient flow back into
preceding layers to construct a heatmap of important regions
in the input space. By overlaying the heatmap with an input
image for a visual classification, relevant features of the im-
age are highlighted. These input features can be considered
domain-specific, low-level knowledge, and not necessarily
interpretable because they can require substantial top-down
knowledge and processing in order to be interpretable for
the user. The amount of knowledge needed varies between
modalities. Whereas words and images might be intuitively
interpretable even for a lay user, other feature spaces are less
intelligible to human thinking. A heatmap of specific fre-
quencies in a spectrogram is beyond anyone’s understand-
ing, except perhaps, for experts in the respective field.

Most works applying XAI techniques pertain to the vi-
sual field and image classifiers. Communicating visual ex-
planations that highlight important features in the input im-
age with the means of a humanoid robot is problematic for
various reasons. The feature space of an input image is usu-
ally quite large and highly correlated. A single highlighted
pixel value does not mean very much for a human inter-
preter whereas a neighborhood of pixels or several super-
pixels contains ambiguities. However, even if a subset of
correlated pixels might be representing a concept, it must
be identified by the explanation method as such.

Explanations in an HRI context should, therefore, take
into account that human minds do not operate in feature
space. However, few works try to abstract from pure feature
visualization to higher-level concepts which are more akin
to human knowledge processing like concept-based reason-
ing (Kim et al. 2018). However, even methods that can gen-
erate meaningful visual concepts for explanations stay on
the sub-symbolic level and do not describe the concepts se-
mantically (Ghorbani et al. 2019). There is still a significant
gap in the research literature of explaining neural networks
with higher-level knowledge and abstracting from lower-
level feature visualizations, especially outside the visual do-
main (Das and Rad 2020). Concept-level explanations are
easier to transfer into semantic representations which would
help robots communicate them.

However, it is not always straightforward to understand
the explanation of a classification, even if it shows some-
what interpretable input features or even concepts. Anchors,
a promising explanation method, tries to find conjunctive
rules that locally explain a classification (Ribeiro, Singh,
and Guestrin 2018). In cases where the rules are chaining
together inherently interpretable chunks like words, simple
rules can explain decisions with a high degree of precision.
Their limitation lies in not being able to capture the (non-
linear) interaction of the features which might lead to false
interpretations on the user’s side. Imagine a situation where
the user is presented with a seemingly linear explanation of a
decision that is actually non-linear. A further problem is that
local explanations do not account for the global behavior of a
model. An agent explaining a decision locally cannot give a
guarantee of making a similar decision in a similar situation.
This is problematic for HRI contexts, where the future pre-
diction of robot behavior through explanations plays a big
role in building a successful relationship between humans
and robots (Klien et al. 2004). Generalization from this rule
without further information might prove catastrophic in pre-
dicting future agent behavior.

Hybrid agents can be regarded as being goal-driven and
data-driven at the same time. While trying to achieve a cer-
tain objective, the perceptions they form about their environ-
ment shape the way they obtain objectives and ultimately,
the realized behavior. By explaining both of these aspects
separately, the task to make the connection and infer their
interaction is left to the user which leaves a lot of room to
ambiguities.

The transfer of concepts and explanations from the sub-
symbolic to the symbolic level is crucial when relaying in-
formation from robots to humans. After all, the explanations
must be communicated within the means of the agent. Con-
sidering humanoid robots, except for special models like the
Pepper (Pandey and Gelin 2018), they are confined to the
channels of communication that humans are familiar with,
i.e. speech and gestures. But relaying the importance of
pixel values or regions in an image through speech alone is
not very feasible. Explanations need therefore be explicitly
catered to or transformed into a modality that is communi-
cable by the robot.



Figure 1: The NICO is a multimodal, humanoid develop-
mental robot built on an affordable and modular open-source
framework for HRI research purposes.

Getting NICO to explain
NICO, the Neuro-Inspired COmpanion, is a humanoid robot
designed for human-robot interaction (Kerzel et al. 2017).
The NICO, as seen in figure 1, can capture data about its
environment from two cameras as eyes for stereoscopic vi-
sual input, from two microphones as ears for auditive input,
and from haptic sensors on his hands and fingers for tactile
input. In order to communicate with humans, there are sev-
eral LEDs in its head to simulate mouth and eyebrows to
show facial expressions. Further, NICO possesses speakers
to transmit sounds and speech. Lastly, two degrees of free-
dom (DoF) for yaw and pitch head movements and at least
eight DoF per arm, depending on the exact hand model, al-
low to convey information via complex gestures. The plat-
form that NICO is built upon mainly consists of dynamixel
motors and open-sourced 3d printed parts. The robot can be
flexibly adapted to specific needs depending on the exper-
imental circumstances (for a more detailed description see
(Kerzel et al. 2017)).

Intrinsic explanations made by NICO would benefit the
positive relations and successful teamwork with other col-
laborators. Understanding its own mechanisms can also help
to gain useful insight and information about the environ-
ment, that was not explicitly learned. Suppose that NICO
is given a command by a human collaborator and has the
task to grasp one out of a few identifiable objects in front of
it, but is not equipped with an explicit object localizer (for
a visualization of the scene, see figure 1). An image classi-
fier, like the Inception Network (Szegedy et al. 2015), only
lets NICO identify the objects but not necessarily their loca-
tion. Figure 1 shows such a scenario. Once a specific object
is identified, NICO can utilize a feature visualization tech-
nique like Grad-CAM to highlight the relevant parts of its

Figure 2: Left: NICO’s visual input. Right: Heatmaps pro-
duced by NICO for the class ”Apple” through Grad-CAM
for weakly supervised object localization.

visual input that are responsible for the classification. Fig-
ure 2 shows the input image that NICO receives from one of
its visual sensors on the left side and the application of the
Grad-CAM algorithm for the classification of ”apple” on the
right side. By exposing those regions of the input image that
contain the object in question, the explanation method Grad-
CAM offers the possibility of weakly-supervised location.
The heatmap can be converted into a binary mask by setting
a threshold and, subsequently, a bounding box can be drawn
around the mask (Selvaraju et al. 2017). This way, NICO
can learn to grasp objects without ever being exposed to lo-
calization training. Thus, intrinsic explanations can make an
agent more versatile by exploiting the mechanisms of neural
networks that were not explicitly trained.

Explanations should be explored in an interactive context
with the goal of mutual understanding. The roles of explana-
tor and explanee need not be fixed with robots being the for-
mer and humans being the latter (Ciatto et al. 2020). Suc-
cessful collaboration requires the robot to know about the
human and vice versa. Representing each others’ beliefs and
cognitions in a Theory of Mind is necessary to predict the
other’s behavior, provide meaningful explanations, and, ulti-
mately, trust each other (Shvo, Klassen, and McIlraith 2020;
Vinanzi et al. 2019). Here, neural networks play a crucial
role in enabling an agent with the ability for continual learn-
ing (Parisi et al. 2019). However, the use of deep learning
models can result in learning unintended shortcuts that do
not generalize well (Geirhos et al. 2020). Intrinsic explana-
tions made by NICO can help expose those shortcuts. With-
out the help of extrinsic explanations that describe better-
suited features or a better classification process, those short-
comings cannot be overcome.

As laid out in the PeCoX framework, the mere generation
of an explanation does not constitute the complete process
of explaining. In order to effectively convey explanations,
it is also necessary to communicate them properly, so that
they can be successfully interpreted by the recipient (Neer-
incx et al. 2018). This holds especially true in HRI con-
texts where communication and interaction with a robot is
the central idea. Due to being designed as a humanoid com-
panion, NICO underlies certain constraints in perceiving the
environment. In fact, all the modalities that are accessible
for sensing the environment, i.e. visual, auditive, and tac-



tile, as well as all the modalities for communicating, i.e.
gestures, facial expressions, and speech, are shared with hu-
mans. Hence, this constraint ensures that the modalities of
the explanations made by NICO are inherently familiar and
more interpretable to human information processing.

The most suitable medium for exchanging explanations
in HRI contexts are rules and relations. Not only can they
be expressed verbally and carry clearly defined seman-
tics, but they are also interpretable by humans and robots
alike. Hybrid neural models like knowledge-based neural
networks that combine symbolic knowledge with the learn-
ing capacity of neural networks (Towell and Shavlik 1994;
Besold et al. 2017) are a promising method for interactive
learning through mutual explanations. Robots can utilize
the rules given by an explanator and insert their symbolic
knowledge into their neural models to learn better behaviors
by extrinsic explanations.

In order to illustrate the necessity of neuro-symbolic hy-
brid approaches for explainable human-robot interaction,
once again picture the grasping example with NICO. One
can illustrate the effectiveness of explanation methods by
analyzing a failed interaction between NICO and a collabo-
rator, for instance after NICO has grasped the wrong object
specified by the human partner in the given command. Two
main origins of failure can be indicated. Either, NICO did
not understand the verbal command correctly or it did not
classify the correct object successfully. Whereas feature vi-
sualisation techniques like LRP allow NICO to identify the
most salient words in the given command and to communi-
cate them to the human partner, thus explaining what it un-
derstood to be important. However, the same cannot be said
about the visual object classification component. After all,
feature visualization as an explanation is only as intelligible
as the features themselves. Semantic features like words are
much easier to understand than the values of individual pix-
els. Also, it is unclear how a robot can effectively commu-
nicate such heatmaps to the interaction partner. Therefore,
such feature importance methods are not suitable for modal-
ities with features that are by themselves not meaningful for
a human. This illustrates a common problem that given ex-
planations from popular XAI algorithms do no translate well
into human-machine interaction contexts and need adapta-
tions and extensions based on symbolic approaches (Ab-
dul et al. 2018). For example, a knowledge-extraction ap-
proach that constructs a knowledge graph out of a deep neu-
ral network classification and extracts meaningful relations
between features could be applied to NICO’s visual input
to explain the (mis)classification (Zhang et al. 2018). Such
relations are symbolically represented and can thus be com-
municated to the collaborator verbally.

Conclusion
Proficiently using neural networks and explaining their be-
havior necessitates that they are explainable in an intelligi-
ble manner by verbal communication. Only a few methods,
so far, enable the representation of an explanation in con-
cepts (Ribeiro, Singh, and Guestrin 2018; Kim et al. 2018;
Ghorbani et al. 2019). Further research about how to ex-
tract rules and semantic knowledge from neural networks

will prove worthwhile for explainable neurorobotics.
By communicating the intrinsic explanations about their

behavior, robots will be enabled to interact with collabo-
rators to reach mutual understanding and expose flaws in
reasoning and decision processes. Interaction partners can
then provide extrinsic explanations to correct their mistakes.
Through inserting the corrected knowledge back into the
neural modules, robots can achieve the possibility to learn
from interactions in a meaningful manner.
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