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Abstract
A sizable portion of research in Human-Robot Interaction
(HRI) focuses on understanding human goals from the per-
spective of the robot so that the robot can learn to work with
people effectively. With interaction being a two-way street,
it is also essential for humans to comprehend robot behav-
ior and make informed decisions when allocating or collabo-
rating on tasks with them. In this work, we explore the con-
cept of the Theory of Mind (ToM) applied to decision-making
in HRI. We have designed an experiment to investigate how
quickly a human can recognize a robot’s capabilities and how
this may impact the attitudes towards or perceptions of the
robot’s performance.

Introduction
Humans can quickly learn to predict the actions of other peo-
ple who constantly share their immediate environment. The
ability to predict and understand others’ behaviors helps hu-
mans to live and work together with more ease and fewer
misunderstandings or errors. As robots become more perva-
sive in multiple fields, it becomes expected and necessary to
quickly communicate the robot’s attributes and capabilities
to surrounding users, particularly in scenarios where there
is direct human interaction and collaboration. Previous stud-
ies have shown that robots that are successfully able to pre-
dict human behavior perform better in many applications,
such as assistive robotics (Losey et al. 2020),(Castelfranchi
and Falcone 1998), smart vehicle resource allocation (Ni-
colo’Brandizzi, Brociek, and Wajda 2021; Hu et al. 2022),
collaborative game (Nguyen et al. 2011), and in risk-aware
decision-making which might be due to human biases to-
ward their own or others’ perspective and opinion (Kwon
et al. 2020).

Even though there has been great progress toward robotic
autonomous operations in multiple fields and tasks, there is
still a gap where humans outperform robots in tasks where a
combination between decision-making and mobility/manip-
ulation exists. One possible reason contributing to this gap
is the difference in perspectives between humans and robots,
and being able to discern between possible robot behaviors
and actions. Therefore, it is difficult to predict a robot’s be-
havior while communicating with it if the conceptual model
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Figure 1: Top view example of 3D experiment set up. Two
optional paths are shown. The path shown in option 1 (blue)
is longer by one square but contains only one turn. The path
depicted by option 2 (green) is shorter but contains 2 turns.

of the robot is wrong. In some cases, this misinterpreta-
tion could be very costly (for example in rescue tasks, au-
tonomous cars, etc.) as cognitive biases toward irrational but
risk-aware behaviors are prevalent in real-world scenarios.
So, to ensure seamless and safe collaboration among robots
and humans, robots need to anticipate how humans will be-
have; the opposite is equally necessary. For example, con-
sider a scenario in which a human-driven car may encounter
an autonomous car as the autonomous car makes an unpro-
tected left turn. If the human couldn’t anticipate that the au-
tonomous car may try to make a turn even when the light
might be running out, this left turn scenario may cause an
accident (Kwon et al. 2020). Thus it is very important to
build the best possible mental model of the robot, as it pro-
vides a formal mechanism for achieving fluent and effective
teamwork during HRI by enabling awareness between team-
mates and allowing for coordinated action.

While mental models are organized knowledge structures
that let people interact with their environment, Theory of
Mind (ToM) is an ability to attribute thought, desires, and
intentions to others and it is critical for day-to-day human



Figure 2: The user determines Duckiebot’s ToM through
multiple iterations in a 3D environment

social interactions such as analyzing, judging, and inferring
others’ behaviors, with evidence that typically developing
humans exhibit this capability at age 3 (Gopnik et al. 2001).
Mental modeling and ToM could lead a robot to form a be-
lief over a human’s mental model of the robot. This kind of
modeling is defined as second-order mental modeling which
enables robots to estimate how a human’s mental model is
affected by its own behavior (Brooks and Szafir 2019; Chen,
Vondrick, and Lipson 2021). In general, a mental model and
ToM could help in describing, explaining, and predicting
the behavior of a singular system, or the behavior of a team
through the idea of a shared mental model. While there has
been extensive research in the understanding of human ToM
(Bellas et al. 2010; Blum, Winfield, and Hafner 2018; Scas-
sellati 2002), there has been very little research aimed to-
ward the study of humans understanding the robot’s ToM.

Through this study, we aim to convey that it is important
to understand how people establish and update a robot’s abil-
ity to infer the mental states of other minds (ToM) for people
to make better predictions of the robot’s actions and, thereby,
enhance task performance in human-robot interaction set-
tings. Therefore, we have developed an experiment with dif-
ferent interfaces where we investigate how quickly humans
can predict the robot’s capabilities and how they update their
assumptions about its capability. We present a study design
and discussions, as well as hypothesize how the world looks
from either the robot or the human perspective.

Methodology
We have divided our experiments into two phases: 2D grid-
world interface and 3D simulation. The 2D interface is cre-
ated using the open-source pygame module, while the 3D
simulation is created using the Unity engine. The goal of
creating a 3D simulation interface is to build different ex-
periment designs before moving on to the more challeng-
ing and time-consuming real-world experiment. Different
participants will experience these two interfaces. We be-
lieve that by making the interaction environment more real-
istic, the participants can better understand the environmen-
tal context and the robot’s intentions. Therefore, the partic-
ipants will be interacting with the Duckiebot robot (Paull
et al. 2017). The main goal for the participant is to predict
the actions taken by the robot in a particular situation and
through multiple iterations understand the ToM of the robot.

A simple user interface (UI) provides instructions about
how they can play the game and what is expected from the
participants. The participant can start playing the game us-
ing arrow keys and predict the robot’s path during the play

from the start point to the goal. Once the player predicts the
path taken by the robot, they will be shown whether they
succeeded at predicting the robot’s action or not. Afterward,
they will be shown the actual path the robot would take in
the given situation.

Experiment Design
The main goal for the participants is to predict the path the
robot would take in the given situation by playing the game
using the keyboard. Apart from the usual up, down, left and
right actions, here the participants will also be able to take
diagonal actions using the Q, E, Z, and C keys on the key-
board. Therefore, the participants can choose from a total
of 8 actions to reach the goal location. The participants will
be playing this game for 10 rounds. We can learn from the
data we collect by letting the participants play through the
interface what the users believe the robot should do in a par-
ticular circumstance. The participants can use any of the 8
arrow keys to make the moves. Although they can convey
8 actions with keys, the robot’s capabilities may differ from
that without the participants’ knowledge. The user interface
is a way for the participants to express their thought on what
path the robot would take but it is not necessary that robot
would follow the same path due to different capability. The
participants will not be informed about what kind of actions
the robot will be able to take prior to the experiment. After
each round, the correct demonstration of the robot’s actions
will be shown to the participants. This will help them ana-
lyze what are the possible actions that can be taken by the
robot and make adjustments to their decisions in the next
round.

We expect the participants to predict what actions the
robot can take and understand their capability by watch-
ing this demonstration. In every round, the initial and the
goal location will be changed to avoid redundancy. After
the completion of the game, the participants will be asked
to fill out a questionnaire about whether they understood
the robot’s actions and if they were able to comprehend the
robot’s capabilities.

Figure 3: The correct trajectory performed by the robot

2D grid-world interface
As shown in Figure 3, the online participants for the first
part will be interacting with a 5x5 grid followed by a 7x7



grid, where the green colored box is the initial position of the
robot and red colored box is the goal position of the robot.
The robot’s current position will be displayed as a yellow
box. The black colored boxes are the spots where the robot
will not go or is not allowed to go. The main goal for the
player is to take the robot to the goal location with minimum
steps. Here, the number of cells visited by the robot will be
considered as the number of steps taken by the robot.

In the 2D scenario, the participants can choose from the 8
actions while the robot does not have the ability to take the
diagonal action. Therefore, an example showing the correct
path the robot will be taking in the given situation is shown
in Figure 3. Initially, the participants will be lacking the ToM
for the robot and they will be assuming that it is obvious
that the robot can also make diagonal movements and it will
only take two steps to reach the goal. After playing some
number of rounds and watching the path taken by the robot,
we expect that the participants will realize that the robot is
not able to take the diagonal actions and it will take 4 steps
to reach the goal location.

3D simulated environment
For the 3D scenario, we have developed a 3D simulation
game with obstacles using Unity. There is a fixed number
of obstacles, each obstacle takes up one grid square. The
example of the 3D environment is shown in Figures ?? and
4. The 3D simulated environment has the same instruction
block in the UI as the 2D environment. The grid size is 5x8
instead of 5x5. A top-down view of the 3D environment is
shown to the user at the same time, as shown in Figure ??.
The map will not contain the path routes. When the game
begins the user will see the 3D environment.

The UI will facilitate the movement of a Duckiebot robot
conducting navigation tasks. In each round, there will be a
simulation of the robot’s capabilities. After the simulation is
complete, the interface will show an instruction block with
the actions available to the user. The UI will indicate that
it is time for the user to start moving the robot and a timed
countdown is displayed. At the end of the countdown, the
UI will compare the user’s actions and the robot’s actions
by attributing a score based on the amount of distance trav-
eled and the number of turns used. The size of the environ-
ment could increase so that the number of path options for
the robot increase and there can be a ”live” run that would
simulate the user controlling the robot in real-time. In this
scenario, a mistake would result in collisions with the envi-
ronment.

After the participant completes each round of the 3D sim-
ulation, they will be observing a Duckiebot navigate a real
course. The path that takes the least time is the one with the
least turns. In this scenario, the important factor to observe is
the total time taken by the participants and the robot to com-
plete the task. The Duckiebot does not turn very efficiently,
the reasons for this are covered in the Robot Overview sec-
tion of the paper. Due to the difficulty in turning, we can say
that when the participants successfully navigate the environ-
ment by creating a path that has the least amount of turns,
one, they have understood the robot’s theory of mind.

Figure 4: First person view from Duckiebot’s camera in 3D
environment

Hypothesis
In the 2D phase of the experiment, the robot’s mental model
has four actions and there are eight action options available
to the participant’s mental model through the UI.

H1: The user’s ability to predict the robot’s action will
decrease proportionally to the difference in the robot’s
capabilities such as motion.

Moreover, if the complexity of the environment increases
(i.e. from a 5x5 to a 7x7 grid) while keeping the action op-
tions available to the user and the robot the same, it will take
longer for the humans to predict the robot’s behavior.

H2: A person’s ability to predict the robot’s action will
be inversely proportional to the complexity of the en-
vironment.

Regarding the environmental context, we submit that by
having an environment that more closely resembles the real
world, participants will be able to predict the robot’s ToM
faster than in the 2D scenario.

H3: A user in a 3D simulated environment and watch-
ing a real robot will be able to understand the robot’s
ToM faster than in the 2D experiments.

Metrics
In order to test our hypotheses, we have considered the fol-
lowing metrics and parameters:

• Number of Squares: We track the number of steps the
participants used in order to reach the goal. Each step
corresponds to the square in the grid excluding the ini-
tial location cell. The optimal number of steps the robot
takes is 4. Therefore, we can say that when the user suc-
cessfully completes the task in 4 steps, it understands the
robot’s ToM.

• Number of Diagonal moves: The participants can make
diagonal moves using the Q, E, Z, and C keys. They are
expected to realize that the robot is not capable of taking
diagonal moves once they watch the video of the robot
performing the task. Therefore, if they take even one di-
agonal move, it is not acceptable.

• Time: We assume that it takes 0.1 seconds for the partic-
ipants to take one step. Therefore, we can say that when



the participant completes the game in 0.3 seconds, they
have understood the robot’s ToM.

• Survey Questions: We have prepared a small question-
naire for the participants regarding their experience play-
ing the game. we use a scaled score method (a number
within 1-5).

Moreover, we observe the number of rounds it takes for
the participants to understand the robot’s capabilities. We
assume that for a small environment of a 5x5 grid, it will
not take more than 4 rounds to do this. For the 5x8 grid, it
will take no more than 8 rounds. As the complexity of the
environment increase. it will take longer for the participants
to predict the robot ToM which proves our hypothesis 2.

Robot Overview: Duckiebot
For this experiment, we chose to use the Duckiebot robot
made by Duckietown. It is a differential drive robot with the
following in the kinematic model.

dx

dt
=

VR + VL

2
cosω (1)

dy

dt
=

VR + VL

2
sinω (2)

ω

dt
=

VR − VL

L
(3)

The Duckiebot has Hall effect sensor wheel encoders,
a front-facing 160° FOV camera, an internal measurement
unit (IMU), and a front-facing time of flight sensor. It also
has a 2G NVIDIA Jetson nano for computation.

For this experiment, we assume that the camera has been
calibrated so that there are no issues with obstacle identifica-
tion and that the odometer has been calibrated so that there
is no drift while driving in a straight line.

The Duckiebot can be manually controlled for with a key-
board controller. The arrow keys are used to steer the robot.
The gain for the velocity of the robot is fixed. The forward
arrow on the keyboard will move the Duckiebot forward.
Since the steering is calibrated, it is assumed that the robot
will travel in the direction of its heading with no error. The
right and left arrows turn the robot in the respective direc-
tions. The steering is sensitive because the velocity is fixed,
and the robot will often overshoot the desired heading when
the keypad is used to steer it. The best technique to achieve
an accurate heading is to use small presses of the correct ar-
row key until the robot achieves the correct heading. This of
course takes time.

The amount of time it takes to turn is much larger than the
amount of time that it takes to travel straight. Therefore, the
Duckiebot’s mental model is represented by the choice of a
path that minimizes turns rather than choosing the shortest
path. The algorithm used is for path planning is presented in
(Hassani, Maalej, and Rekik 2018).

Discussion
Given that the hypothesis’ are confirmed, these experiments
would demonstrate a person’s capacity to comprehend a

robot’s mental model through observation and trial and error.
In the first experiment, the robot’s capability was limited to
moving straight and it could not move diagonally. Humans
had the ability to move diagonally and would naturally de-
fault to the diagonal movement. This is because of the fact
that over time humans learn to find the shortest path and they
might think that the robot also has the capability to move di-
agonally. as they do. After some rounds of observations, the
human would realize that that capability did not exist in the
robot.

In the 3D experiment, the human had the ability to move
the robot with the arrow keys on the keyboard. Once again
human is expected to default to the shortest path. In this
case, Duckiebot’s mental model was a path-planning algo-
rithm that minimized the number of turns. The human could
understand kinematics described in Equations 1, 2, and 3 but
hidden from them was the fact that the time it took to achieve
the correct heading when there was ω

dt was much greater
than when the Duckiebot’s velocity was straight dx

dt + dv
dt .

Due to the increased complexity of the experiment as well
as the ability to freely use the arrow keys to execute turns
and forward movement it would take the human more time
to understand the mental model of the robot. This is impor-
tant because as intelligent autonomous robots are designed
the relative complexity of the task can be used as a metric
for how much information needs to be supplied to a human
operator or teammate so that optimal performance can be
achieved.

One of the limitations of this study is that hypothesis H3
assumes that the introduction of 3D obstacles will have no
effect on the path selection. In the future, we would like to
extend the experiments where the participants will be collab-
orating with an advanced robot performing a more complex
task.
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