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Abstract

Conversational assistive robots have the potential to guide
humans in accomplishing a wide range of daily tasks, such
as cooking meals, performing exercises, and operating ma-
chines, etc. However, for effective interaction, the robot must
be capable of deducing human’s goal from their interactions
with the surrounding environment. While inferring the world
and user state, the robot has limited capability to perceive
human intentions, a challenge further complicated by noisy
sensors that contribute to partial observability of the envi-
ronment. This problem compounds as the robot accumulates
more noisy observations about the user and environment over
extended durations. In this paper, we will elaborate on our re-
search to enable the robot to engage in accurate real-time in-
ference and modeling of both the world and the user’s state,
especially over extended periods. Subsequently, we will delve
into the prospective paths for addressing uncertainty in ex-
tended social interactions within the framework of cultivating
an anticipatory dialogue about the future at the crossroads of
AI and HRI. Our work equips home robots with enhanced
situational awareness for long-term social interactions.

Introduction
Conversational assistive robots can aid people to accomplish
various tasks such as cooking meals, performing exercises,
or operating machines. Imagine a scenario where the human
mistakenly performs sub-optimal actions while cooking din-
ner, e.g., forgetting to turn off the stove. In such a situation,
an assistive robot must be able to suggest corrective next
steps based on its understanding of the world and the user
(Erol, Hendler, and Nau 1994; Wang and Hoey 2017). An
assistive robot guide to turning off the stove will be effec-
tive in the given case. To interact effectively, the robot must
infer the human’s goal and current step in the activity given
the observations of the state of the appliances, e.g. (the mi-
crowave is off, the stove is on) and the state of the attributes
of objects (e.g., dishes are dirty). Such an assistive robot will
benefit people with dementia or cognitive impairment. It can
also be helpful to an operator trying to build a machine, a
child with autism trying to do their homework, or a child
learning to do a chore.
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The problem of inferring the world and user state is chal-
lenging because the sensors are noisy, and the robot has par-
tial observability of the environment and the human’s inten-
tion. The uncertainty in state estimation compounds as the
robot collects more noisy observations about the user and
environment over long periods of time (Adu-Bredu et al.
2021). Existing approaches do model the user and the world
state but do not handle uncertainty from both the world sen-
sors’ observation and human language for state estimation
over extended periods. Our proposed work aims to introduce
methods to manage these various sources of uncertainty. Our
work aims to enable the robot to perform accurate and time-
efficient online inference of the world and user state in a
partially observable environment, especially over extended
periods.

Handling Different Sources of Uncertainty
Long-term social interactions require an estimation of the
world and user state given a sequence of observations of hu-
man’s interaction with the environment. In this section, we
will describe the different sources of uncertainty for esti-
mating the world state, the user state for long-horizon as-
sistive robotics. We will also outline our related research
fronts for handling uncertainty in extended social interac-
tions, contextualized within the objective of cultivating a
forward-thinking dialogue about the future at the confluence
of AI and HRI.

Uncertainty in the World State
Home-service robots have a great potential to assist human
users by retrieving spatial-temporal 1 information about the
objects in the environment from their long-term observa-
tions. Imagine a home robot monitoring the environment
over long periods of time. Such a robot will have a mas-
sive amount of observations of the objects in the environ-
ment. The human user can then ask the home robot to assist
them in finding objects in the environment by asking a sim-
ple query such as ”What are the favorite places in the house
where I can place my keys?” To answer such a simple query,
the service robots must have a situational understanding of

1Spatial-temporal information of object refers to the where-
abouts of the object such as where the object has been identified
in the physical environment of the robot and at what times



the environment over extended periods, not just for days but
weeks and months. This requires the robot to estimate the
state of objects in the environment over an extended time in
a partially observable environment. Service robots with such
an ability will be well-suited to help the elderly, especially
those with dementia.

The previous approaches for long-term object state esti-
mation and retrieval either assume 1. static scenes - CLIP
(Radford et al. 2021; Caron et al. 2021; Huang et al. 2022;
Shah et al. 2023; Gadre et al. 2022; Jatavallabhula et al.
2023), 2. losed set of concepts (Kang, Bailis, and Zaharia
2019; Qi et al. 2020; Li and Belaroussi 2016; Sünderhauf
et al. 2017), or 3. short-time horizon for object search
(Ambruş et al. 2014; Bore, Jensfelt, and Folkesson 2015).
For long-term object retrieval, the above assumptions leave
a partially-observable robot searching over countless detec-
tions of objects in visual sensor data from many different
time slices. These detections will contain partial views 2 of
different object instances. Further, storing all these partial-
view detections will take up a lot of memory space and time.
Existing approaches will search all of these partial views of
objects even when they are not irrelevant to the query.

We propose a Detection-based 3-level hierarchical
Association approach, D3A that allows for a compact and
query-able spatial-temporal state estimation representation
(Idrees et al. 2021; Idrees, Reiss, and Tellex 2020). The
robot is equipped with a map of the environment, and at
any given time step i can gather the following sensory in-
formation si =< probot,i, di, fi >, where probot,i ∈ Probot

is the associated robot’s pose, and di ∈ D is the correspond-
ing depth information for image frame fi. The robot collects
large amounts of sensor data S = {s1, s2, ..., si} and uses
an object detector to extract the relevant object-centric infor-
mation ai from every frame fi. Our algorithm then performs
a three-tier online incremental learning to associate objects
over time by identifying keyframes that best represent the
unique objects in the environment. Our spatial-temporal rep-
resentation of objects in the environment enables answering
of queries for object retrieval from long-term observations.

D3A demonstrates high accuracy and time efficiency
when queried. For data collection, we allow mobile robot
Kuri Mayfield (Robotics 2018) to patrol our uncontrolled
and cluttered robotics lab environment, including the kitchen
area and a general sitting area for four days. The cleaned and
annotated dataset amounted for 22 hours. For consistency,
we kept the illumination same (well-lit lab). We show that
our queryable semantic scene representation for the clean
dataset occupies only 0.17% of the total sensory data. We
also discuss the retrieval performance of our system with a
parameterized synthetic embedding detector. When D3A is
queried for 59 ground truth objects, the ground truth object
instance is found on average in the 5th return frame, while
for baseline, the ground truth object can be found in the 20th
frame. For effective long-term social interactions, the robot
must handle uncertainty in both the world and the user state
over long-horizon tasks. This brings us to user state infer-

2Partial views of objects refers to the partially occluded objects
seen from different viewpoints by the robot

ence discussed in the next section.

Uncertainty in the User State
As the human interacts with its surrounding environment,
even in an environment where the robot has maximal sensor
information, like a smart home, the robot still needs to figure
out what it is human doing. To be an effective assistant, the
robot must interpret the goal the human is trying to achieve
and the action the human should take to complete their plan.
Our approach infers this based on their interaction based on
their interaction with the environment.

Previously, human progress during hierarchical tasks has
been modeled using hierarchical task networks (HTNs)
(Wang and Hoey 2017; Höller et al. 2018). However, these
plan/goal recognition techniques do not allow the agent to
leverage its ability to use language to reduce uncertainty by
asking questions. Further, interpreting language input from
the human is challenging because of the vast space of obser-
vations — language utterances spoken by the human. The
existing solution to this problem is heuristics (Razzaq, Khan,
and Lee 2017; Fasola and Matarić 2013; Kidd and Breazeal
2008), which are prone to fail as the tasks get complex and
the environment sensors become complex or noisy.

We propose to solve this problem by combining the Hi-
erarchical Task Networks (HTNs) with Partially Observable
Markov Decision Process (POMDP) in our - Dialogue for
Goal Recognition (D4GR) (prounced Dagger). This is par-
ticularly challenging because the POMDP does not assume
a hierarchical human mental model or task specification
structure (Goldman 2021). Further, the state and observation
spaces are large for modeling users and the world. For our
work, we assume the person is a planner with hierarchically-
described goals and subgoals. The agent is represented by a
POMDP model updating its belief in human progress by ask-
ing clarification questions about noisy sensor data. An illus-
tration of our approach’s architecture and a sample example
of a clarification question is shown in Fig-1.

We evaluate the performance of D4GR over various cook-
ing tasks and blocks domain for stacking letters to make
words in a simulated environment introduced by (Wang and
Hoey 2017) and perform a robot demonstration. With lan-
guage feedback and the world state information in a hierar-
chical task model, we show that our D4GR formulation has
a similar goal and plan recognition accuracy as the ORA-
CLE baseline ALWAYS-ASK method, that always ask the
correct question, while asking 68% fewer questions. D4GR
framework for the highest sensor noise performs 1% bet-
ter than HTN in goal accuracy. The ALWAYS-ASK oracle
outperforms our policy by 3% in goal recognition and 7%
in plan recognition. Our framework validates that incorpo-
rating language feedback and modeling the user as a Hier-
archical Task Network improves goal and plan recognition.
Our approach does so by enhancing the accuracy of robots’
belief of human progress and demonstrating the effective-
ness of POMDPs for tracking task progress and user engage-
ment. Our work shows promising improvements in human
intent recognition and open venues for social roboticists to
improve human-robot interaction. For further enhanced in-
teractions, the robot must handle the diversity in human be-



Figure 1: Architecture of - Dialogue for Goal Recognition (D4GR)

haviors over long periods of time. Our next section focuses
on a related line of work that handles diversity in human be-
havior.

Variability in Human Behavior
The development of a commercial robot to coexist with peo-
ple over the long term in a home environment is a chal-
lenging task. For robot behaviors that depend on spatial in-
teraction with users, prediction of their locations, or long-
term adaptation to user behavior, it can be difficult to evalu-
ate performance effectively through on-device testing alone.
Hence, simulation provides a scalable solution for testing
production code.

We identify five essential prerequisites for achieving real-
istic simulations of human activities in the context of testing
human-robot interactions. We focus on only spatial interac-
tions between humans and robots for our proposed work. For
these interactions, the identified requirements are as follows:
1. Manual control over simulated behaviors
2. Execution on a variety of different floorplans
3. Configurability for different personas or lifestyles
4. Long-term activity modeling
5. 3D human motion generation

We propose a novel framework for simulating daily user
activity at scale for testing and developing commercial
robots, enabling testing of robot behaviors at scale in a sim-
ulation environment. The framework enables manual daily
schedule tuning for developing typical-use and corner-case
tests for testing and quality assurance. Our case studies
demonstrate the framework’s expressive capability, and we
also evaluate the approach’s potential to emulate example
data using both public and internally-captured datasets. In
all cases, the similarity between the generated data and ref-
erence data was much higher than the random baseline, and
comparable to the self-similarity within the reference set it-
self.

Overall, this work makes a significant contribution to the
field of social robotics by providing a systematic approach

for testing robot behaviors related to daily user activity. By
helping to avoid training data bias, our approach has the po-
tential to make robot behavior effective for a broad range of
user households, making it a valuable tool for future research
and development in AI-HRI and specifically social robotics.

AI-HRI Technical Bridge
As robotics systems engage in complex tasks across ex-
tended timeframes, effectively navigating uncertainties be-
comes increasingly critical. Innovations in the subfields of
the AI-HRI community e.g., robot perception, planning, and
decision-making algorithms, will allow robots to dynami-
cally assess and adapt to changing environments, unforeseen
events, and evolving task requirements. Within AI-HRI’s
long-horizon robotics community, we believe that two cru-
cial aspects stand out: the need for generalized representa-
tions of the world and the user state, and the utilization of
abstract spatial-temporal structures to enhance the model-
ing of these elements, ultimately leading to improved sit-
uational awareness for robots engaged in extended tasks.
Based on this, our work proposes having generalized repre-
sentations of the world and the user state is essential. Long-
horizon robotic tasks often span diverse environments and
involve interactions with various users or entities. To effec-
tively handle these scenarios, robots must possess versatile
and adaptable models of the world they operate in and ac-
curate assessments of the states, intentions, and preferences
of the users they interact with. Another proposal is to adopt
spatial-temporal structures in modeling the world and the
user state, which is a powerful approach. Such structures al-
low the robot to capture multi-level abstractions of the en-
vironment and user interactions. Spatial-Temporal represen-
tations enable the robot to discern global and local patterns,
temporal dependencies, and spatial relationships within its
surroundings. This abstraction approach helps the robot or-
ganize and process information more efficiently, leading to
a more comprehensive understanding of its environment and
the users it interacts with. By leveraging these structures,
the robot can detect high-level context changes, infer com-



plex user behaviors, and make informed decisions based on
richer cues, leading to improved situational awareness.

Together, combining generalized representations and uti-
lizing spatial-temporal structures in modeling the world and
user state empowers robots to excel in long-horizon tasks.
This approach equips robots with the ability to handle uncer-
tainty, and engage in prolonged interactions while maintain-
ing high situational awareness, making them valuable and
effective partners in various real-world applications.

Conclusion
Our proposed lines of research aim to test the hypothesis
that using spatial-temporal structures to model the world
and user state in long-term social interactions can enable the
robot to have a more accurate and time-efficient online state
inference. We outline the prospective paths for handling un-
certainty in extended social interactions, contextualized to
cultivate a forward-thinking dialogue about the future at the
confluence of AI and HRI. Our proposed direction aim to
improve the robot’s user experience over extended periods
by performing better state estimation for long-term social
interactions. In our work, we describe three sources of un-
certainty - world state, user state, and variation in human
behavior. First, we propose a novel algorithm that performs
efficient world state estimation over long periods while han-
dling uncertainty due to noisy sensors and partial observabil-
ity. Next, we present a novel formulation for accurately in-
ferring the latent variable of the user’s goals and plans from
noisy world sensors and language feedback. Finally, we out-
line a framework for generating scalable, configurable, and
variable schedules for daily human activity, enabling testing
of robot behaviors at scale in a simulation environment. Our
proposed prospective paths aim to enable generalized goal
inference of human progress during long-horizon task com-
pletion. Our introduced methods help manage uncertainty in
the world, user, and task specifications. A home robot with
enhanced state estimation capabilities can better assist hu-
mans during task completion, improving long-term social
interactions. Hence, our line of work opens venues in for en-
hanced human-robot interaction in the AI-HRI community.
Our research takes a step towards seamlessly integration of
robots into users daily lives while provides valuable social
support during various tasks and activities. Hence, our line
of work opens venues for enhanced human-robot interaction
in the AI-HRI community.
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Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and goal recognition as HTN planning. In 2018 IEEE
30th International Conference on Tools with Artificial Intel-
ligence (ICTAI), 466–473. IEEE.
Huang, C.; Mees, O.; Zeng, A.; and Burgard, W. 2022. Vi-
sual Language Maps for Robot Navigation. arXiv preprint
arXiv:2210.05714.
Idrees, I.; Hasan, Z.; Reiss, S. P.; and Tellex, S. 2021. Where
were my keys? - Aggregating Spatial-Temporal Instances of
Objects for Efficient Retrieval over Long Periods of Time.
CoRR, abs/2110.13061.
Idrees, I.; Reiss, S. P.; and Tellex, S. 2020. RoboMem: Giv-
ing Long Term Memory to Robots. CoRR, abs/2003.10553.
Jatavallabhula, K. M.; Kuwajerwala, A.; Gu, Q.; Omama,
M.; Chen, T.; Li, S.; Iyer, G.; Saryazdi, S.; Keetha, N.;
Tewari, A.; et al. 2023. Conceptfusion: Open-set multimodal
3d mapping. arXiv preprint arXiv:2302.07241.
Kang, D.; Bailis, P.; and Zaharia, M. 2019. Challenges and
Opportunities in DNN-Based Video Analytics: A Demon-
stration of the BlazeIt Video Query Engine. In CIDR.
Kidd, C. D.; and Breazeal, C. 2008. Robots at home: Un-
derstanding long-term human-robot interaction. In 2008
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 3230–3235. IEEE.
Li, X.; and Belaroussi, R. 2016. Semi-dense 3d seman-
tic mapping from monocular slam. arXiv. arXiv preprint
arXiv:1611.04144.
Qi, X.; Wang, W.; Yuan, M.; Wang, Y.; Li, M.; Xue, L.; and
Sun, Y. 2020. Building semantic grid maps for domestic
robot navigation. International Journal of Advanced Robotic
Systems, 17(1): 1729881419900066.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748–8763. PMLR.



Razzaq, M. A.; Khan, W. A.; and Lee, S. 2017. Intent-
Context Fusioning in Healthcare Dialogue-Based Systems
Using JDL Model. In International Conference on Smart
Homes and Health Telematics, 61–72. Springer.
Robotics, M. 2018. Meet Kuri! The Adorable Home Robot.
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