
Natural Language Generation and Parsing as Heuristic Planning Problems

Josefina Sierra-Santibáñez
Technical University of Catalonia, Spain, maria.josefina.sierra@upc.edu*

Abstract
This paper formulates the problems of natural language gen-
eration and parsing as particular instances of the classical
planning problem. It assumes the existence of a Categorial
Grammar lexicon from which the preconditions and effects
of available actions are obtained. A declarative formalization
of heuristics for action selection is used to guide the search for
solutions. Heuristics for mapping formulas in the description
logic DL-LiteR,u into English sentences and backwards, and
examples of application to Human Robot Interaction (HRI)
are presented to illustrate the effectiveness of the approach.

Introduction
This paper studies the problem of human-robot communica-
tion in scenarios where a shared ontology should be built as
a result of human-robot cooperation (e.g. map building). In
particular, it addresses the issues of what language a human-
robot team should use to communicate with each other, and
how parsing and generation could be carried out flexibly, ro-
bustly and efficiently to facilitate cooperation.

We restrict attention to controlled languages (CL) (Hui-
jsen, 1998; Kittredge, 2003) to deal with the first issue. The
heuristic planning approach to parsing and generation pro-
posed addresses the second issue. The logical language used
for the declarative formalization of heuristics allows encod-
ing a wide variety of information (syntactic, semantic, do-
main model and contextual) which can be exploited indis-
tinctively by the planner for parsing and generation, to deal
with anaphora, semantic/structural ambiguity, grammatical
errors, or missing vocabulary in a flexible/robust manner.

The rest of the paper is organized as follows. First, we
review basic concepts of λ-Calculus and Categorial Gram-
mar (CG). Then, the formulation of natural language gener-
ation and parsing as planning problems is presented. Next,
a declarative formalization of heuristics for action selec-
tion and the approach to planning associated with it are de-
scribed. Finally, the approach is illustrated with heuristics
that allow mapping DL-Lite{R,u} formulas into English sen-
tences and backwards, and examples of situated word learn-
ing and word formation mechanisms in a HRI scenario.

*Partially supported by MCIN/AEI/10.13039/501100011033
under grant PID2020-112581GB-C21.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The λ-Calculus and Categorial Grammar
We use the λ-Calculus (Church 1940) as a formalism to rep-
resent the meanings of the basic expressions of a language,
and a compositional method to define the meaning of non-
basic expressions from the meanings of basic expressions.

In the simply typed λ-Calculus there are infinitely many
types of terms constructed from a finite set of basic types.
A common choice of basic types in linguistics consists of a
type Bool of Boolean values and a type Ind of individuals.
The set of simple types is then built up by closing the set of
basic types under the construction of total function types.

Terms in the λ-Calculus are built up out of variables and
constants (Carpenter 1997). For each type τ we assume:
1. Varτ : a countably infinite set of variables of type τ .
2. Conτ : a collection of constants of type τ .
The collections Termτ of λ-terms of type τ are defined as
the smallest sets such that: 1) Varτ ⊆ Termτ ; 2) Conτ ⊆
Termτ ; 3) α(β) ∈ Termτ if α ∈ Termσ→τ and β ∈ Termσ;
4) λx.α ∈ Termτ if τ = σ → ρ, x ∈ Varσ and α ∈ Termρ

A term of the form α(β) is said to be a functional appli-
cation, and one of the form λx.α a functional abstraction.

In categorial grammar (Ajdukiewicz 1935; Bar-Hillel
1950; Lambek 1958, 1961), every syntactic category cor-
responds to some λ-Calculus type, with the assumption be-
ing that expressions of each category can be assigned mean-
ings of the appropriate type. We assume some finite set
BasCat = {np, n, s} of basic categories, which abbreviate
noun phrase, noun, and sentence respectively, and are asso-
ciated with the following λ-Calculus types Type(np) = Ind,
Type(s) = Bool, and Type(n) = Ind → Bool. BasCat
is used to generate an infinite set Cat of functional cate-
gories that is the smallest set such that: 1) BasCat⊆Cat; 2)
(A\B)∈Cat if A,B∈Cat; 3) (B/A)∈Cat if A,B∈Cat.

A category B/A or A\B is said to be a functor category,
and to have an argument categoryA and a result categoryB.
A functional category of the form B/A is called a forward
functor and looks for its argument A to the right, while the
backward functor A\B looks for its argument to the left.

The main operation in Applicative Categorial Grammar
(ACG) is the concatenation of an expression of a functional
category and an expression of its argument category to form
an expression of its result category, with the order of con-
catenation being determined by the functional category.

The correspondence Type: Cat→ λ-Calculus Types for Cat
is Type(A\B) = Type(B/A) = Type(A)→ Type(B)
We assume we have a finite set BasExp of basic expressions,
e.g. some subset of English words or possibly complex se-
quences of words that constitute a single lexical entry.
Definition 1 (Categorial Lexicon) A categorial lexicon is
a relation Lex ⊆ BasExp×Term×Cat such that if a lexical
entry e⇒α :A ∈ Lex, then α ∈ TermType(A).

Definition 2 (PSACG) The phrase-structure rules of ACG
are all instances of the following application schemes.
α :B/A,e1, β :A,e2 ⇒ α(β) :B, e1 ·e2 Forward Application
α :A,e1, β :A\B,e2⇒ β(α) :B, e1 ·e2 Backward Application

The forward scheme states that if e1 is an expression of cat-
egory B/A with meaning α, and e2 is an expression of cat-
egory A with meaning β, then expression e1·e2 (e1 concate-
nated to e2) is an expression of category B with meaning
α(β). The backward scheme is interpreted similarly.

Phrase structure trees formalize derivations where: the
leaves are lexical entries, and the internal nodes the result of
applying a phrase structure rule to their immediate succes-
sors. Let 〈α : C, e, 〈T1, T2〉〉 denote the tree rooted at cate-
gory α :C, e with daughter trees T1, T2 (Carpenter 1997).
Definition 3 (AdmTreeLex) The set of admissible trees as-
sociated with a lexicon Lex is the least set such that:
1. 〈α : C, e〉∈AdmTreeLex if e⇒ α : C∈Lex
2. 〈α(β):C,e, 〈T1, T2〉〉∈AdmTree if T1,T2∈AdmTree

and Root(T1), Root(T2)⇒ α(β) : C, e ∈ PSACG.
The language recognized by lexicon Lex is the expression
set LLex={e |T∈AdmTreeLex and Root(T)=(α :C, e)}.

Parsing and Generation as Planning Problems
This section proposes a formulation of generation (i.e. map-
ping λ-terms into natural language expressions) and parsing
(i.e. the reverse mapping) as classical planning problems.

Definition 4 A classical planning problem P is a tuple
(S, s0, SG, A, f), where: 1) S is a set of states; 2) s0 ∈ S
is the known initial state; 3) SG⊆S is the non-empty set of
goal states; 4) A(s) ⊆A is the set of applicable actions in
state s; 5) f is the deterministic transition function. f(a, s)
is the state resulting from performing action a in state s.
A solution to P is an action sequence a0, . . . ,an that gener-
ates a state sequence s0,. . . ,sn+1 where sn+1∈SG is a goal
state, each ai ∈ A(si) is applicable in state si, and each
si+1 =f(a,si) follows si (Geffner and Bonet 2013).

The domain model of a planning problem is the set of states
and available actions. A problem instance is a pair of ini-
tial and goal states, As we will see, the planning problems
of parsing and generation share the same domain model.
Definition 5 Given a lexicon Lex, a construction is a pair
((e,B), α) such that there is a tree T ∈ AdmTreeLex with
Root(T) = (α : B, e). The expression and category (e,B)
form the syntactic part and the λ-term α the semantic part.

The notion of a construction (Goldberg 1995) has been for-
malized in Fluid Construction Grammar (Steels 2011) using
feature structure unification and merge for parsing and gen-
eration in the context of language evolution experiments.

Definition 6 Parsing and Generation Planning Problems
A state s is a set of constructions Ψ. The initial state s0 is
the empty set of constructions. The set of goal states SG is
I) SG={Ψ|((e,B),β)∈Ψ} the set of states which contain a
construction ((e,B), β) for parsing problem (e, Lex); and
II) SG ={Ψ|((e′,B), α)∈Ψ} the set of states which contain
a construction ((e′, B), α) for generation problem (α,Lex).
The available actions set A={add construction(C1, C2)|
each Ci=1,2 is a construction}. A(s), the set of applicable

actions, and f(a, s), the transition function, are defined by
specifying the preconditions and effects of each action1.

Preconditions: add construction(C1, C2) can be executed
in state s if C1, C2 ∈ Ψ

⋃
Lex, and if C1 can be applied

toC2 using the application schemes of ACG (see below).
Effects: the result of executing add construction(C1,C2) in
s is s′=Ψ

⋃
{C1(C2)}. C1(C2) denotes the result of ap-

plying construction C1 to construction C2, and equals
• ((e1 ·e2, B), β(α)), if C1 is of the form ((e1, B/A), β)

and C2 is of the form ((e2, A), α), (forward app.); or
• ((e2 ·e1, B), β(α)), if C1 is of the form ((e1, A\B), β)

and C2 is of the form ((e2, A), α), (backward app.).

Note the domain model (states and actions) of the planning
problems (α,Lex) generation and (e, Lex) parsing is de-
termined by the CG lexicon Lex specified in its formulation.

Heuristic Planning with Declarative Formalization
of Heuristics for Action Selection
We propose solving the generation and parsing problems
using a heuristic planner, i.e. a planner that explores the
space of selectable states rather than that of reachable states.
A state is selectable (respectively, reachable) if it can be
generated by applying a sequence of selectable (resp. exe-
cutable) actions to the initial state. (Sierra-Santibanez 1998)
describes a heuristic forward chaining planner which uses a
declarative formalization of heuristics for action selection
to circumscribe the set of states that should be considered
to those that are selectable according to a strategy for action
selection. The advantage of representing heuristics declara-
tively is that it is possible to refine the action selection strat-
egy of the planner/robot by simple additions of better heuris-
tics, as proposed in the advice taker (McCarthy 1959).

An action selection strategy Σ is a set of action se-
lection rules. An action selection rule is an implication
whose antecedent depends on a state s, and whose conse-
quent takes the following forms: Good(a, s), Bad(a, s) or
Better(a, b, s)2. The heuristic planner determines the set
of selectable actions for a state s by interpreting Σ non-
monotonically (Lifschitz 1995) and considering that an exe-
cutable action a is selectable in s if: (1) a is good for s; or
(2) if there are no good actions for s, and a is not bad for s.
Next, we present an action selection strategy that allows a
heuristic planner to map DL-LiteR,u formulas into English
sentences, and a second strategy it can use for parsing them.

1See next sections for examples of constructions, actions, and
their application to parse/generate sentences in a HRI scenario.

2The intuitive meaning of these predicates is that performing
action a in state s is good, bad, or better than performing action b.

Generating English Sentences for DL-LiteR,u

DL-Lite (Calvanese et al. 2007, 2011) is a family of Descrip-
tion Logics (DLs) (Baader et al. 2003) studied in the con-
text of ontology-based access to relational databases. DL-
LiteR,u is a member of DL-Lite in which the Terminological
Knowledge Base (TBox) consists of inclusion assertions of
the form Cl v Cr. Cl and Cr denote concepts that may
occur on the left and right-hand side, and can be of the form:
Cl −→ B | ∃R | Cl1 u Cl2
Cr −→ B | ¬B | ∃R | ¬∃R | ∃R.B
where B denotes an atomic concept and R an atomic role.

Inclusion Assertions in DL-LiteR,u can be translated into
FOL formulas of the form ∀x(Cl(x)→ Cr(x)) such that3
Cl(x) −→ B0(x) ∧

∧m
i=1Ai(x)

Cr(x) −→ B(x) | ¬B(x) | ∃yR(x, y) |¬∃yR(x, y)|
∃y(R(x, y) ∧B(y))

where each Ai(x) can be of the form Bi(x) or ∃yRi(x, y).
B,Bi denote unary predicates, and R,Ri binary predicates.

Lexicon LexR,u
every ⇒ λU.λV.∀x.(U(x)→ V (x)) :

(stb/(np\scr))/ncl
everyone ⇒ λU.λV.∀x.(U(x)→ V (x)) :

(stb/(np\scr))/(np\swho)
who1 ⇒ λU.λx.U(x) : (np\swho)/(np\scl)
is a ⇒ λU.λx.U(x) : (np\s)/n
is not a ⇒ λU.λx.¬U(x) : (np\scr)/n
does not ⇒ λU.λx.¬U(x) : (np\scr)/(np\s)
robot ⇒ λx.robot(x) : n
explores ⇒ λx.explore(x) : np\s
scans ⇒ λy.λx.scan(x, y) : (np\s∃)/np
something ⇒ λU.λy.∃x.U(y, x) :

((np\s∃)/np)\(np\s)
a ⇒ λU.λV.λy.∃x.(V (y, x) ∧ U(x)) :

(((np\s∃)/np)\(np\scr))/n
who2 ⇒ λU.λV.λx.(U(x) ∧ V (x)) :

(ncl\ncl)/(np\scl)
and ⇒ λU.λV.λx.(U(x) ∧ V (x)) :

((np\scl)\(np\scl))/(np\scl)

(Bernardi, Calvanese, and Thorne 2007) define a CG lexi-
con that captures a fragment of English consisting of sen-
tences whose meanings belong to DL-LiteR,u. They ex-
ploit the syntax-semantics interface provided by the Curry-
Howard correspondence between the Lambek Calculus and
the λ-Calculus to obtain DL-Lite representations of expres-
sions in this English fragment compositionally while pars-
ing (van Benthem 1987). Although we use the lexicon in
(Bernardi, Calvanese, and Thorne 2007) with slight varia-
tions (see Lexicon LexR,u above4), our work differs from

3We assume without loss of generality that B0(x) is one of the
conjuncts inCl(x) that can be expressed by a noun in the lexicon, if
there is any; otherwise, B0(x) ≡ true and Cl(x) ≡

∧n

i=1
Ai(x).

4The λ-Calculus type of subcategories stb, scr, scl, swho, s∃
of s is Bool; and that of subcategory ncl of n is Ind→Bool. The
following lexical entries implement the inference rules (np\s)⇒
(np\scr), (np\s)⇒(np\scl), and n⇒ncl.

Cr : ∅ ⇒ λUλxU(x) : (np\scr)/(np\s)
Cs : ∅ ⇒ λUλxU(x) : (np\scl)/(np\s)
Cl : ∅ ⇒ λUλxU(x) : ncl/n

theirs in using heuristic planning to solve the parsing prob-
lem rather than logical deduction, and in providing an algo-
rithmic solution to the natural language generation problem.

Heuristics for Expressing Cr(x) of ∀x(Cl(x)→Cr(x))
Given a basic expression e of a lexicon Lex, Ce denotes the
construction associated with lexical entry e⇒α :A∈Lex5.
1. If Cr(x) is of the form B(x) and there is a lexical entry
e⇒ λxB(x) : A ∈ Lex such that A is
(a) n (noun), then good(add construction(Cr,Cis a(Ce)),s)
(b) np\s, intrans verb, good(add construction(Cr,Ce),s)

2. If Cr(x) is of the form ¬B(x) and there is a lexical
entry e⇒ λxB(x) : A ∈ Lex such that A is
(a) n (noun), then good(add construction(Cis not a,Ce),s)
(b) np\s, then good(add construction(Cdoes not,Ce),s)

3. If Cr(x) is of the form ∃yR(x, y) and e ⇒
λyλxR(x, y) : (np\s∃)/np∈ Lex (transitive verb), then
good(add construction(Cr,Csomething(Ce)),s)

4. If Cr(x) is of the form ¬∃yR(x, y) and e ⇒
λyλxR(x, y) : (np\s∃)/np∈Lex (transitive verb), then
good(add construction(Cdoes not,Csomething(Ce),s)

5. If Cr(x) is of the form ∃y(R(x, y) ∧ B(y)), e1 ⇒
λyλxR(x, y) : (np\s∃)/np ∈ Lex and e2 ⇒ λxB(x) :
n∈Lex, then good(add construction(Ca(Ce2),Ce1),s)

Heuristics for Expressing Cl(x) of ∀x(Cl(x)→Cr(x))
These rules treat A1(x), the first conjunct in

∧m
i=1Ai(x):

1. If A1(x) is of the form B(x), and there is an entry e ⇒
λxB(x) : A ∈ Lex such that A is
(a) n, B0(x) 6≡true, good(add construction(Cs,Cis a(Ce)),s)
(b) np\s (intr. verb), good(add construction(Cs,Ce),s)

2. If A1(x) is of the form ∃yR(x, y), and there is a lexi-
cal entry e ⇒ λyλxR(x, y) : (np\s∃)/np ∈ Lex, then
good(add construction(Cs,Csomething(Ce)),s)

These rules treat the rest of the conjuncts in
∧m
i=1Ai(x):

1. If there is a subformula H(x) ∧ D(x) of
∧m
i=1Ai(x)

such that the current state s contains construction
CH=((eH , np\scl)), λxH(x)) and lexical entry
(a) ei ⇒ λxD(x) : n ∈ Lex, then
good(add construction(Cand(Cs(Cis a(Cei))),CH),s)
(b) ei ⇒ λxD(x) : np\s ∈ Lex, then
good(add construction(Cand(Cs(Cei)),CH),s)

2. If there is a subformulaH(x)∧∃yR(x, y) of
∧n
i=1Ai(x)

such that the current state s contains a construction
CH = ((eH , np\scl)), λxH(x)) and there is a lexical
entry ei ⇒ λyλxR(x, y) : (np\s∃)/np ∈ Lex, then
good(add construction(Cand(Cs(Csomething(Cei))),CH),s)

These rules add “every + noun + who” or “everyone who”
to a conjunction of clauses.
1. If Cl(x) is of the form

∧m
i=1Ai(x) with m >

0, there is no lexical entry of the form e ⇒
λxAi(x) : n ∈ Lex for i = 1, . . . ,m (i.e.
B0(x) ≡ true), and the current state s contains a
construction CG = ((eG, np\scl, λx(

∧m
i=1Ai(x)), then

good(add construction(Ceveryone, Cwho1 (CG)),s)
5We assume all rules of the form Condition(s)→

good(add construction(C1,C2),s) satisfy the condition C1(C2))6∈s.

2. If Cl(x) is of the form B0(x) ∧
∧m
i=1Ai(x) with6

m > 0, there is a lexical entry e ⇒ λxB0(x) :
n ∈ Lex, and the current state s contains a
construction CG = ((eG, np\scl), λx(

∧m
i=1Ai(x))),

good(add construction(Cevery,(Cwho2 (CG))(Cl(Ce))),s)

Termination Heuristic Given a language generation
problem (α,Lex) with α of the form ∀x(Cl(x)→ Cr(x)),
if the current state s contains a construction CG =
((eG, stb/(np\scr)), λX1∀x2(Cl(x2) → X1(x2))) and
another construction CH = ((eH , np\scr), λx3Cr(x3)),
then good(add construction(CG,CH),s).

Parsing Sentences in the English Fragment LLexR,u

The following heuristics allow a heuristic planner to map
English sentences in LLexR,u , the language recognized
by lexicon LexR,u, into DL-LiteR,u formulas. The set of
heuristics has the same structure as that presented for the
generation problem, except that the conditions of the rules
depend on the form of e, the English sentence to be parsed.
The action selection strategy for parsing requires adapting
all the rules in the action selection strategy for generation.
But we only indicate how to adapt one action selection rule
in each of the main groups of the strategy for generation.

Heuristics for Parsing the Part of e Expressing Cr(x)
(Rule 5) If there are lexical entries e1 ⇒ λyλxR(x, y) :
(np\s∃)/np and e2 ⇒ λxB(x) : n in Lex, and there is
an expression eh such that e = eh · e1 · “a” · e2, then
good(add construction(Ca(Ce2),Ce1),s).

Termination Heuristic Given parsing problem (e, Lex),
if state s contains two constructions of the form Ccl ≡
((ecl, stb/(np\scr)), β) and Ccr ≡ ((ecr, np\scr), α), and
ecl ·ecr=e, then good(add construction(Ccl,Ccr),s).

Related Work
(Lierler and Schüller 2012; Schüller 2013) use Planning and
the CYK algorithm (Kasami 1965), Answer Set Program-
ming (ASP) (Gelfond 1988; Baral 2003), and Combinatory
Categorial Grammar (CCG) (Steedman 2000) for parsing
NL. Our work uses a smaller set of combinatory rules than
(Schüller 2013), and requires the introduction of heuristics
for action selection for efficient parsing, but allows parsing
sentences into semantic representations as (Blackburn and
Bos 2005; Bernardi, Calvanese, and Thorne 2007; Steels
2011) do, and addresses the problem of NL generation as
(Steels 2011) does.

(Geib 2016) uses the same CG-based formalism for plan-
ning and plan recognition (as we do for NL generation and
parsing), and specifies action preconditions, effects, causally
prior tasks and causally subsequent tasks in CCG.

(Koller and Petrick 2011) translate the the sentence gener-
ation problem into a planning problem, using tree-adjoining
grammars (Joshi and Schabes 1997), and defining actions as
operations that add a single elementary tree to the derivation.

6If B0(x) 6≡true, m=0, good(add construction(Cevery ,Cl(Ce)),s)
.

Application Examples
Although a pattern matching approach can be used to map
formulas in DL-LiteR,u into English sentences, and back-
wards, such an approach does not build semantic and syn-
tactic representations for each component of a formula or
of an English sentence, nor can it exploit domain dependent
or contextual knowledge to fill in missing information, learn
associations between expressions and meanings in context,
or extend a robot’s lexicon using word formation mecha-
nisms. The following examples illustrate how the formal-
ization proposed allows implementing such abilities.

Consider a scenario where a human-robot team is try-
ing to build a map of a damaged area after an earthquake.
Suppose a human team member asks a supervisor robot:
Does every robot examine a region? But the robot does
not understand the word “examine”. If the robot had a
lexical entry for “examine”, it could apply heuristic 5 for
parsing, adding the construction (Ca(Cregion))(Cexamine)=
((“examine a region”, np\scr), λx0.∃y.(examine(x0, y) ∧
region(y)) to its current state. The problem is that lexi-
cal entry “examine”⇒λy.λx.examine(x, y) : (np\s∃)/np
does not belong to the robot’s lexicon. However, the position
of expression “examine” in the sentence allows inferring its
syntactic category, and therefore the λ-Calculus type of the
λ-term that could constitute its meaning. Using such syntac-
tic and semantic information, the heuristic planner described
in this paper could hypothesize the existence of lexical entry
“examine”⇒ λy.λx.λR.R(x, y) : (np\s∃)/np where vari-
able R, ranging over binary predicate symbols, represents
the indeterminate part of its semantic component.

Using the hypothesized lexical entry, the planner could
apply rule 5, and add the following construction to its current
state ((“examine a region”, np\scr), λx0∃y(λR.R(x0, y)∧
region(y)). Afterwards, the planner would apply rule 2
for parsing “every+noun” (case m = 0), add construction
Cevery(Cl(Crobot))=((“Every robot”, stb/(np\scr)),
λX1.∀x2.(robot(x2) → X1(x2))), use termination rule
((“Every robot examines a region”, stb),∀z(robot(z) →
∃y(λR.R(z, y) ∧ region(y)))) and parse the question7.

Finally, the robot could unify the semantic part of this
construction and formula F≡∀x(robot(x)→∃y(scan(x, y)
∧ region(y))), obtained by sensing the current situation;
guess the sentence’s meaning should be F , and add lexi-
cal entry“examines”⇒λy.λx.scan(x, y):(np\s∃)/np to its
lexicon through this situated word learning process.

Suppose a human says “Is Robot 5 approachable from
where you are?” to Robot 2, who has lexical entries
“read”⇒λy.λx.read(x, y) : (np\s∃)/np
“readable”⇒λx.∃y.read(y, x) :pn\s
“approach”⇒λy.λx.approach(x, y) : (np\s∃)/np

Robot 2 could build lexical entry “approachable” ⇒
λx.∃y.approach(y, x) : pn\s from that for “readable”, ap-
plying the word formation scheme λStem(Stem·“able”⇒
λx.∃y.Stem(y, x)) :pn\s) to Stem “approach”8.
This example illustrates how a robot could formalise word
formation mechanisms, such as derivation or compounding.

7Category q for question, lex entry Does⇒λUλxU(x):q/stb.
8Category pn for proper noun, and Robot 5⇒robot 5:pn.

References
Ajdukiewicz, K. 1935. Die Syntaktische Konnexitat. Studia
Philosophica, 1: 1–27.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Bar-Hillel, Y. 1950. On Syntactical Categories. Journal of
Symbolic Logic, 15: 1–16.
Baral, C. 2003. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press.
Bernardi, R.; Calvanese, D.; and Thorne, C. 2007. Lite Nat-
ural Language. In Proc. of the 7th Int. Workshop on Compu-
tational Semantics (IWCS 2007).
Blackburn, P.; and Bos, J. 2005. Representation and In-
ference for Natural Language. A First Course in Computa-
tional Semantics. CSLI Publications.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The MASTRO system for ontology-based
data access. Semantic Web, 2: 43–53.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite Fam-
ily. Journal of Automated Reasoning, 39: 385–429.
Carpenter, B. 1997. Type-Logical Semantics. MIT Press.
Church, A. 1940. A formulation of a simple theory of types.
Journal of Symbolic Logic, 5: 56–68.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan and
Claypool Publishers.
Geib, C. 2016. Lexicalized Reasoning about Actions. Ad-
vances in Cognitive Systems (ACS), 4: 187–206.
Gelfond, L.-V., M. 1988. The stable model semantics for
logic programming. In International Logic Programming
Conference and Symposium (ICLP), 1070–1080.
Goldberg, A. E. 1995. Constructions: A Construction Gram-
mar Approach to Argument Structure. Chicago : University
of Chicago Press. ISBN 978-0-226-30086-3. Originally pre-
sented as the author’s thesis (Ph.D.)–University of Califor-
nia, Berkeley, 1992.
Joshi, A.; and Schabes, Y. 1997. Tree-Adjoining Grammars.
Kasami, T. 1965. An efficient recognition and syntax anal-
ysis algorithm for context-free languages. Technical Report
AFCRL-65-758, Air Force Cambridge Research Laboratory.
Koller, A.; and Petrick, R. 2011. Experiences with plan-
ning for natural language generation. Computational Intel-
ligence, (27): 23–40.
Lambek, J. 1958. The mathematics of sentence structure.
American Mathematical Monthly, (65): 154–169.
Lambek, J. 1961. On the calculus of syntactic types. In
Structure of Language and its Mathematical Aspects: Pro-
ceedings of Symposia in Applied Mathematics, 166–178.
American Mathematical Society.

Lierler, Y.; and Schüller, P. 2012. Parsing Combinatory Cat-
egorial Grammar via planning in Answer Set Programming,
volume 7265 of LNCS, 436–453. Springer.
Lifschitz, V. 1995. Nested abnormality theories. Artificial
Intelligence, 74: 1262–1277.
McCarthy, J. 1959. Programs with common sense. In In
Mechanization of Thought Processes, Proceedings of the
Symposium of the National Physics Laboratory, 77–84.
Schüller, P. 2013. Flexible combinatory categorial grammar
parsing using the CYK algorithm and Answer Set Program-
ming. In International Conference on Logic Programming
and Nonmonotonic Reasoning, 499–511. Springer Berlin
Heidelberg.
Sierra-Santibanez, J. 1998. Declarative formalization of
strategies for action selection. In Proceedings of the Seventh
International Workshop on Non-monotonic Reasoning.
Steedman, M. 2000. The syntactic process. MIT Press.
Steels, L. 2011. Introducing Fluid Construction Grammar.
In Steels, L., ed., Design Patterns in Fluid Construction
Grammar, 3–30. Amsterdam: John Benjamins.
van Benthem, J. 1987. Categorial Grammar and Lambda
Calculus, 39–60. Boston, MA: Springer US. ISBN 978-1-
4613-0897-3.

