Plug in the Safety Chip: Enforcing Temporal Constraints for LLM Agents
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Abstract

Recent advancements in large language models (LLMs) has
enabled a new research domain, LLM agents, for solving
robotics and planning tasks by leveraging the world knowl-
edge and general reasoning abilities of LLMs obtained dur-
ing pretraining. However, while considerable effort has been
made to teach the robot the “dos”, the “don’ts” received rel-
atively less attention. We argue that, for any practical us-
age, it is as crucial to teach the robot the “don’ts”: convey-
ing explicit instructions about prohibited actions, assessing
the robot’s comprehension of these restrictions, and, most
importantly, ensuring compliance. Aiming at deploying the
LLM agents in a collaborative environment, we propose a
queryable safety constraint module based on linear tempo-
ral logic (LTL) that simultaneously enables natural language
(NL) to temporal constraints encoding, interactive belief con-
firmation, and unsafe action pruning. To demonstrate the ef-
fectiveness of our system, we conducted experiments in Vir-
tualHome environment. The preliminary results show that our
system scales well with complex temporal constraints, high-
lighting its potential for practical utility. (Code is available at:
https://shorturl.at/cgru9)

Introduction

Equipped with the skills of reasoning based on common
sense (Valmeekam et al. 2023) and task decomposition of
large language models (LLMs), LLM-based autonomous
agents, or more recently termed LLM agents (Weng 2023),
have emerged as a promising approach for various applica-
tions (Wang et al. 2023), including planning, logical reason-
ing as well as robotics tasks. However, with the increasing
desire to deploy these agents in daily settings for robotics
tasks, ensuring safety has become an inevitable concern, par-
ticularly in situations where safety holds more significance
than the assigned tasks themselves.nln this work, inspired by
the categorization of (Gu et al. 2023), we consider an LLM
agent to be safe if it acts, reasons, and generalizes obeying
human desires and never reaches unsafe states, and we de-
fine safety violation to be transitions to invalid states spec-
ified by formal language translated from natural language
(NL). Consider a scenario in which a physically embodied
robot agent is being deployed across various environments
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for different roles, such as housekeeping for the elderly in
a nursing home or drug delivery for patients in a hospital.
While current planning and control mechanisms are mostly
interested in the robot’s capabilities, there are vital concerns
underlying safety issues in these specific domains. To an-
swer their question, “is this robot safe?” an ideal solution
would be a miracle “safety chip” that can be plugged into
existing robot agents: this chip would empower the robot
agent with the skills to comprehend customized safety in-
structions per user requests, convey safety specifications in
its belief through NL, and diligently adhere to established
safety standards. Still, three major obstacles exist on the path
toward this “safety chip” for LLM-based robot agents:

* The inherently probabilistic nature of LLM agents hin-
ders their ability to consistently adhere to safety stan-
dards. This problem becomes exacerbated when goal
specification conflicts with safety constraints.

* LLMs struggle to scale up as the complexity of con-
straints increases, which can distract an LLM agent from
completing the original task and consume memory from
its capacity.

* Currently, LLM agents rely on external feedback mod-
ules such as affordance model for grounded decision-
making. Despite their high in-domain performance, such
pretrained modules are likely to have limited ability to
generalize to new domains or to be customized to human
preference.

To overcome the aforementioned challenges, our work intro-
duces a novel safety constraint module based on linear tem-
poral logic that can be integrated into existing LLM agent
frameworks to enforce safety constraints, as demonstrated
in Figure 1. The main contributions of this work are:

* Proposed a safety constraint module for customizable
constraints, integrated the proposed module into an ex-
isting LLM agent framework, and deployed the whole
system in an embodied environment.

* A fully prompting-based approach for translating NL to
LTL and explaining violation of LTL specification in NL.

* A formal method-based action pruning and feedback for
active re-planning for LLM agents.
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Figure 1: Demonstration of safety constraint module’s functionality of using encoded LTL formulas for dialogue, monitoring,

and re-planning.

Related Works
LTL for Safety in Robotics

Linear temporal logic (LTL) (Pnueli 1977) has found utility
in expressing temporal task specification for various plan-
ning and learning tasks (Shah, Li, and Shah 2020; Liu et al.
2022). Its application for safety purposes arises from its va-
lidity and rigorous nature (Pacheck and Kress-Gazit 2022;
Kress-Gazit, Lahijanian, and Raman 2018).

In the broader context of Human-Robot Interaction
(HRI), the subject of safety topic has been investigated in-
depth (Lasota, Fong, and Shah 2017). Compared to their
aspect, where safety is viewed through a shared physi-
cal workspace, we view safety through task planning as
language-specified constraints that have to be satisfied. To
the best of our knowledge, such task-level safety satisfac-
tion is under-explored by existing HRI research.

LLM Agents

LLMs exhibit substantial reasoning abilities and have been
deployed for planning in either embodied domain or in prac-
tice, and a line of works (Ahn et al. 2022a; Huang et al.
2022b,a; Chen et al. 2022; Shah et al. 2022) have shown in-
teresting results on deploying the LLM agents for robotics.
Among them, (Huang et al. 2023) has touched on the safety
topic, and (Singh et al. 2022; Liang et al. 2022) are pio-
neers in utilizing formal language (python code) for plan-
ning. Recent works (Liu et al. 2023a; Xie et al. 2023) turn to
Planning Domain Definition Language (PDDL) for more ac-
curate reasoning and solving longer-horizon planning prob-
lems, while a big assumption they made is that PDDL’s syn-
tax is sufficiently expressive for various NL instructions.

Our method attempts to combine the strength of both
paradigms by plugging the proposed safety constraint mod-
ule into an existing LLM agent. We hope to adapt the gen-
erality and expressiveness of natural language and the rigor-
ousness of formal language.

Translation between NL and LTL

The attempts to translate NL to LTL range from traditional
RNN model (Gopalan et al. 2018; Patel, Pavlick, and Tellex
2020) to the recent LLM-based works (Chen et al. 2023;
Pan, Chou, and Berenson 2023; Liu et al. 2023b). How-
ever, a shared challenge in these studies is the limited avail-

ability of training data. While LLMs show great improve-
ment in translation, their performance deteriorates with in-
creased complexity, posing difficulties in generalizing to
out-of-distribution formulas.

LTL to NL works such as (Cherukuri, Ferrari, and Spo-
letini 2022) are still in an early stage, likely due to the chal-
lenge of learning representations of high-level abstractions
of LTL and deterministic finite automatons (DFAs). Our ap-
proach tackles the problem by providing state information
as knowledge representation of the DFA. We believe such
backward translation could serve as a valuable interface be-
tween humans and LTL-based robot systems.

Method
Problem Definition

For an existing LLM agent making decisions based on in-
context knowledge l,gent, We enforce a series of temporal
constraints {¢; } concerning safety aspects by encoding each
of them into LTL formulas {¢;} and composing them to-
gether into one single formula ¢ = A" ¢;, which is then
stored as a DFA A . Responding to a safety constraint query
@, our module generates a response W via a language model
based on P(W|lepny,la), where lep, is the domain knowl-
edge, 4 is an explanation of constraint violation generated
from P(lallagent, @, To.;). To monitor the LLM agent exe-
cuting a high-level task 7", which ought to be decomposed
by the agent into a set of subtasks or actions {¢;}, we mask
unsafe action ¢; at time step ¢ by progressing its partial tra-
jectory {to,t1,...,t;} with A, and regenerate the action ¢
after modifying its distribution from P(t}|lagent, To:i—1) to
P(ti\lagent, To:i—1, 1) with the explanation { 4.

Overview

As Figure 2 shows, our system consists of a translator
system for NL to LTL translation, a dialogue system for
queryable safety constraints, and a constraint monitor sys-
tem for validating and pruning actions generated by the
LLM agent. The DFA serves as the central part of the safety
constraints module: it represents the safety constraints en-
coded from the LTL formula in a validatable form, reasons
the violation of constraints with state changes of proposi-
tions, and validates the agent’s proposed action by progress-
ing the proposition-level trajectory. In addition, the output



‘,.r""/Safety Module
i DFA

1 0
Constraints:

. Translator —>
“Avoid table” i

o

0

|

Constraint

Query:
. i “Can | go to fridge via table?”
<«—> Dialogue <« Response:
i “No/Yes, ..”

Go to fridge

Instruction: - Go to stove
+

Go to freezer’ Affordance

:
i |

Monitor | Re-plan
e 1

!
X
v
Final Action:
T Gotostove

Figure 2: System Diagram. The safety constraint module infers specification of constraints from NL and stores it as DFA. The
DFA is then used for monitoring the decision-making process of an LLM agent, and responses of queries from human or agent
can be generated accordingly to confirm the encoded constraints or help the LLM agent with decision-making

of the dialogue system is also used to assist the agent in per-
forming re-planning.

NL to LTL Translation

We adopted the modular framework of Lang2L.TL (Liu et al.
2023b) as NL to domain-specific LTL formula transla-
tor using a predefined vocabulary. This involves extract-
ing referring expressions, grounding referring expressions to
propositions within the vocabulary, translating lifted utter-
ances to formulas, and finally producing grounded formulas
by replacing placeholders with grounded propositions (see
Figure 3). The noteworthy distinction is that our translation
module relies solely on in-context learning and necessitates
no fine-tuning due to the compositionality nature of our ap-
proach: the safety constraints are assumed to be provided as
a series of basic segments. This enables separate translation
and assembly into a single LTL formula with logical opera-
tors, which is usually logical AND (&) since the constraints
commonly apply simultaneously. For more details, we rec-
ommend referring to the original Lang2 TL paper.

Queryable Safety Constraints

The dialogue system serves two purposes: confirming the
module’s belief regarding safety constraints and assisting
LLM agents in effective re-planning. Similar to the transla-
tion system, the query system relies entirely on prompting.
As recent research (Ji et al. 2023) shows, LL.Ms are trapped

Don’t enter big blue room| before|the green one.| ‘

.
Don’t enter A before B. N
»
TAUB

!|b|ue_room|U|green_room|
T

Figure 3: Lang2LTL translation example. Referring expres-
sions are extracted and grounded into predefined proposi-
tions, and lifted NL utterance is translated into a lifted for-
mula. The two are combined to produce the final result.

by hallucination and generally unreliable for classification
tasks, making them unsuitable to be directly applied for val-
idation detection in our case. Fortunately, the DFA can pro-
vide action validity through trajectory progression, thereby
reducing LLMs’ role to explanation. The dialogue system
handles two query types:

Agent query is only sent to the dialogue system when the
LLM agent violates given safety constraints in its next ac-
tion. After a violation is detected by the constraint moni-
tor, safety constraints, valid actions and invalid actions, and
its corresponding truth value changes are provided in the
prompt together with task specifications, which explicitly in-
structs the language model to explain the reason for violation
for robot agent to re-plan (see the action pruning section).
Human query could be sent anytime to confirm the agent’s
belief of encoded constraints are aligned with human users
through queries such as “Will you go to the kitchen before
the bathroom?”. In order to get trajectory for validation, the
original LLM agent roll-outs the full trajectory (no execu-
tion) without monitored by the safety chip, and the trajectory
is then progressed by the DFA. If any violation is detected,
a query regarding validity and state changes will be sent to
the dialogue system similar to the agent query. Here is an
example prompt of dialogue system to handle agent query:

Constraints: [‘you have to enter living room before bath-
room’ ]

Invalid action: walk to bathroom

State change:

Safe: !bathroom & bedroom & 'kitchen & !living_room
Violated: bathroom & bedroom & !kitchen & !liv-
ing_room

Reason of violation:

Unsafe Action Pruning

Pruning unsafe actions performed by the constraint mon-
itor module constitutes the core functionality of the safety
chip. Since we keep tracking the truth values of each propo-
sition in the LTL formula as the LLM agent is planning and
executing, state transition in the DFA can also be monitored.
Thus, assuming we have perfect truth value functions and
transition model, any violation of the safety constraints can
be detected in advance, and we can mask out the unsafe ac-



tion and ask the LLM agent to re-generate the plan from the
last step. However, masking alone doesn’t provide any infor-
mation to the LLM agent, causing the agent to likely choose
an action within the same distribution of the masked unsafe
action since its distribution remains unchanged. Inspired by
(Raman et al. 2022; Yao et al. 2023), in addition to masking
out unsafe actions, we utilize the dialogue system to pro-
vide feedback to the agent regarding reasons for violation.
This approach prompts the LLM agent to reason over expla-
nations for validation results, introducing an inductive bias
from the dialogue system.

An example implementation of re-planning for correction in
the generation loop is shown as follows (task specification
and examples are removed for simplicity):

Go to toilet

Description: Travel through the house and locate the
bathroom, and proceed to the toilet.

0. walk to bathroom

Error: The user is trying to enter the bathroom before en-
tering the living room, which violates the constraint “you
have to enter living room before bathroom”. The correct
plan would be:

0. walk to living room

Error: The action “walk to livingroom” violates the con-
straint “you have to enter bedroom before going into liv-
ing room”. According to the state change, the user is cur-
rently in the kitchen and has not entered the bedroom yet.
The correct plan would be:

0. walk to bedroom

. walk to living room

. walk to bathroom

. walk to toilet

. DONE

SN =

Experiments

Experiments are conducted in VirtualHome environment. In
the experiment section, we aim to draw comparisons be-
tween the proposed method and baseline method where both
instruction and constraints are fed together to LLM agents.

VirtualHome Environment & Tasks

VirtualHome (Puig et al. 2018) is a multi-agent platform
that supports simulated household tasks in embodied envi-
ronments. We adopted five household tasks from its origi-
nal dataset, e.g., ”Put salmon into the fridge”, and five sat-
isfiable constraints are incrementally applied to each task,
e.g., ”Go to living room means you have to go to kitchen
in the future.” All constraints fall in avoidance and trigger
patterns formulated by (Menghi et al. 2021). Task difficulty
is carefully controlled as all tasks can be completed success-
fully by both our approach and the baseline method when no
constraint applies, and all tasks are ensured to be achievable
with any constraint set. Through the experiment, we access
environmental information such as locations and states of
objects from the simulator for truth values.

LLM Agent

The LLM agent for both the baseline and the foundation
framework for the proposed safety module is developed on
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Figure 4: Average success rate versus number of constraints

SayCan (Ahn et al. 2022b) and LLM-Planner (Liu et al.
2023a). During execution, the agent generates one action at
a time and then appends it to the prompt for the subsequent
generation loop. In its prompt, environmental information
and available actions are provided together with an example
of planning under constraints.

Preliminary Results

Figure 4 shows the results of the average task success rate of
the five tasks with an increasing number of constraints from
one to five. The performance of the baseline model wors-
ens as the number of constraints increases from zero to five.
Notably, the baseline model also makes unanticipated mis-
takes when handling instruction together with constraints,
though manages to reach the specified goal state. The mis-
takes include redundant actions such as touch door, and in-
executable actions that overlook geometric features such as
walk to bedroom when the agent is already in bedroom.
Conversely, our proposed method produces fewer mistakes
and only fails when LLM never generates a safe action due
to incorrect reasoning or imperfect explanation generated by
the dialogue system. Moreover, our system never executes
unsafe actions, regardless of task success.

Conclusion & Future Work

To address the safety concern of deploying LLM agents in
practice, we introduced a safety module that supports cus-
tomizable temporal constraints by simultaneously encoding
NL constraints, confirming the encoded safety constraints
by interacting with human users, and monitoring and assist-
ing the decision-making process of an LLM agent. From the
preliminary results and for future works, we aim to prove
three hypotheses:

» Safety constraints are challenging and distracting for
LLM agents to handle as their complexity increases.

» Ablating things from different abstraction levels holds
the potential to aid LLM agents in concentrating on rea-
soning, to effectively function as a “brain”.

* Formal language like LTL that can be validated is gener-
ally more reliable and interpretable than fully end-to-end
approaches, particularly concerning the safety aspects of
robot agents.

Lastly, we emphasize the pressing need for more attention
to safety aspects from the LLM agents community, as these
considerations are indispensable for any practical utilization.
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