
Towards A Natural Language Interface
for Flexible Multi-Agent Task Assignment

Jake Brawer1 2, Kayleigh Bishop1, Bradley Hayes1, Alessandro Roncone1

1 Department of Computer Science, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO USA
2 US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

firstname.lastname@colorado.edu

Abstract

Task assignment and scheduling algorithms are powerful
tools for autonomously coordinating large teams of robotic
or AI agents. However, the decisions these system make of-
ten rely on components designed by domain experts, which
can be difficult for non-technical end-users to understand or
modify to their own ends. In this paper we propose a pre-
liminary design for a flexible natural language interface for
a task assignment system. The goal of our approach is both
to grant users more control over a task assignment system’s
decision process, as well as render these decisions more trans-
parent. Users can direct the task assignment system via nat-
ural language commands, which are applied as constraints
to a mixed-integer linear program (MILP) using a large lan-
guage model (LLM). Additionally, our proposed system can
alert users to potential issues with their commands, and en-
gage them in a corrective dialogue in order to find a viable
solution. We conclude with a description of our planned user-
evaluation in the simulated environment Overcooked and de-
scribe next steps towards developing a flexible and transpar-
ent task allocation system.

Introduction
In this paper we propose a flexible natural language inter-
face for a task assignment and scheduling system. Task as-
signment and scheduling algorithms are powerful tools for
coordinating large teams of robots, AIs, or humans while de-
manding minimal user oversight. As demonstrated by Gom-
bolay et al. (2015), such systems are not only generally su-
perior to users in delegating tasks but that users prefer to
cede control to them. However, this finding has been chal-
lenged by work demonstrating a reversal in this preference
when a user’s workload is low (Karakikes and Nathanael
2023), such as when users are acting in a supervisory role.
Indeed, when empowered to provide supervisory guidance
to task assignment systems, users can sometimes quickly in-
fer crucial parts of the optimal solution that would other-
wise require substantial time to compute (Petersen, Kleiner,
and Von Stryk 2013). A further complication is that the
task assignment problem is often posed as a constrained
mixed-integer linear program (MILP; Gombolay, Wilcox,
and Shah 2013; Omar and Payeur 2019; Wang and Gom-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bolay 2020), which can be difficult to modify, let alone un-
derstand, without technical expertise or the use of inflexible,
task-dependent GUIs. We aim to combine the power of al-
gorithmic approaches with the intuition and experience of
human supervisors by giving users the ability to easily con-
trol and modify task scheduling formulations.

Our work draws upon research interrogating the use of
natural language interfaces for task assignment and schedul-
ing, robot policy learning and motion planning, as well
as recent innovations in transformer-based large language
models (LLMS; Vaswani et al. 2017). Work in the former
has demonstrated that user-provided symbolic constraints
can be used to effectively guide a wide range of decision
making and learning processes, including policy shaping
(Brawer et al. 2023) and multi-agent task assignment (Pe-
tersen, Kleiner, and Von Stryk 2013). In terms of the lat-
ter, recent work has shown that LLMs can both transform
unrestricted natural language prompts into actionable rep-
resentations, such as robot policy code (Liang et al. 2023;
Huang et al. 2023), as well as produce concise and accu-
rate text summaries of extant source code (e.g. Ahmed and
Devanbu 2022). Our approach combines both strands of re-
search by allowing users to influence the task allocation pro-
cess through natural language directives and using LLMs to
enforce these directives as valid constraints on an underlying
MILP. Crucially, our system can alert users when added con-
straints conflict with previously specified constraints, or pre-
vent a satisficing solution from being found, engaging users
in a corrective dialogue to amend or remove the faulty con-
straint. Additionally, users can interrogate the system as to
why certain assignments were made, improving the trans-
parency of the entire process.

In the remainder of this paper, we provide an overview
of the proposed approach, as well as outline a planned user-
study for evaluating the efficacy and ease-of-use of the ap-
proach in a collaborative gridworld environment based on
the game Overcooked (Carroll et al. 2019).

Method
In this section we detail our proposed task-assignment dia-
logue interface. We first define the task-assignment problem
for multiple robots moving and working in the same physi-
cal space as a mixed-integer linear program (MILP). Subse-
quently, we outline proposed architectural components that



Figure 1: An example interaction with our proposed system. Our approach will enable users to modify and inspect a multi-
agent task assignment system via the interface of spoken language. This will be accomplished by converting user commands into
mathematical constraints on an associated MILP using an LLM. The consistency monitor ensures that user-provided constraints
do not prevent task assignments from being found, and engages the user in a corrective dialogue if problematic constraints are
identified.

enable a naive user-in-the-loop to modify and query the task
assignment system. Refer to Fig. 1 for a high-level diagram
of our approach.

Our approached builds upon and extends the method out-
lined by Petersen, Kleiner, and Von Stryk (2013). Here the
authors propose a system enabling users to add constraints to
a task-assignment and scheduling MILP designed to coordi-
nate teams of robots. Our work builds on this in two impor-
tant ways: 1) constraints will be specified entirely via natural
language, rather than a bespoke, task-dependent GUI inter-
face; 2) our system is specifically designed to be robust to
the challenges and ambiguities inherent to natural language
interactions as well as the complexities of real-time system
adaptation made possible by such interactions. To do this
we adopt the same basic formalism developed by Petersen,
Kleiner, and Von Stryk (2013):

minimize
∑
i∈R

∑
j1∈T∪{0}

∑
j2∈T

zij1j2 · kij1j2 (1)

−
∑
i∈R

∑
j∈J

xij · ρj +
∑
j∈T

(p1j · α1 + p2j · α2)

subject to
Cpre(A,S, P )

Cuser(A,S, P |U)

Here xij , zij1j2 ∈ A for agents i ∈ R and tasks j, j1, j2 ∈
T are binary decision variables indicating the assignment of
an agent i to task j and the order in which tasks are as-
signed, respectively. kij1j2 , ρj ∈ P are scalar parameters

encoding the cost incurred by agent i for attempting task j2
after j1, and the reward for completing task j, respectively.
p1j , p2j ∈ S are continuous decision variables weighted by
scalar parameters α1, α2 ∈ P reflecting how early or late a
task j has been scheduled, respectively. In sum, this objec-
tive seeks to find assignments and schedules that maximize
the reward accrued while minimizing the costs incurred by
these assignments and the deviations of task schedules from
their pre-specified time windows.

Cpre and Cuser are sets of constraints applied to the
MILP. Cpre is a minimal set of pre-specified constraints
comprised of the decision variables and parameters in A,S
and P . These constraints ensure that a baseline, useful solu-
tion can be found for a wide range of multi-agent coordina-
tion problems. For example, the constraint cn ∈ Cpre where
cn =

∑
i∈R xij ≤ 1,∀j ∈ T ensures that only one agent

i ∈ R is assigned to one task j ∈ T at a time.
Cuser is a set of user-defined constraints also comprised

of the symbols in A,S and P , but conditional on user ut-
terances U issued to the language interface (see following
section). These constraints encode a user’s high-level prefer-
ences or the assignment and scheduling process. For exam-
ple, if a user identifies that agents a and b collaborate well
on a task j, a user might tell the language interface “assign
agent a to task i if agent b has already been assigned to it,”
which would be translated to the corresponding conditional
hard constraint xaj ≥ xbj .

Language Interface
We intend the language interface to act as a bidirectional in-
terface between the task assignment process and the user’s



preferences for the assignment process; it will allow users
to both “program” the system by issuing verbal commands
that will be converted into constraints applied to the MILP,
as well as “debug” it, by engaging the user in corrective
dialogue when issues arise. Ultimately this requires of our
language interface two key abilities: i) the ability to trans-
form language into a corresponding mathematical constraint
in the form of a syntactically correct MILP optimization API
call (Gurobi in this instance; Pedroso 2011), and ii) the abil-
ity to transform these same API calls back into comprehen-
sible text explanations. To do this we will adapt recent meth-
ods for eliciting accurate task-oriented dialogue from LLMs
(Hudeček and Dušek 2023; Yu et al. 2023). The main idea
is to dynamically construct prompts, containing few-shot ex-
amples, based both on the system and task state as well as the
user utterance itself. This is achieved in part by having the
LLM perform multiple passes over a user utterance. In the
initial, pre-processing pass, the LLM first attempts to discern
the action the user wishes the system to perform (e.g. to add
or remove a constraint, to produce an explanation, etc.). This
determination is then used to select a more targeted prompt
and set of examples for eliciting an accurate and relevant
response from the LLM given the same user utterance.

As a consequence, the language interface can enable a
user to debug “compile-time” and “run-time” errors raised
by the task assignment system, to extend the programming
metaphor further. Compile-time errors refer here to a failure
of the system to find a valid solution to the MILP. Such a
failure might be due to a user issuing commands that pro-
duce overly restrictive constraints, or constraints that are in
conflict. As outlined in the following section, in order to cor-
rect this type of error, the language interface would engage
the user in a corrective dialogue in order to remove or amend
the offending constraints.

Run-time errors in the assignment process can occur if
tasks are assigned, but do not line up with the user’s com-
municated preferences. In this case, the user would have to
take a more proactive role in the debugging process. The
language interface will accommodate this by allowing users
to issue interrogative, “why?” queries, such as, “why wasn’t
agent i assigned to task j?” Such a query would initiate a
counterfactual assignment wherein the consistency monitor
would attempt to make this assignment, and observe which
constraints, if any, are violated. The violated constraints are
then sent to the language interface, and a suitable answer to
the user’s query is generated.

Consistency Monitor
As we are designing our system with the intention that users
will be regularly adding to and modifying its constraints, it’s
imperative that it be able to quickly check the consistency of
these constraints.That is, it is conceivable that a user may in-
advertently “break” the task assignment, either by suggest-
ing two constraints that are in direct conflict (e.g. the con-
straints “task a should be completed after task b” followed
by the constraint “task b should be completed after task a”),
or a constraint that is overly restrictive.

In order to mitigate these potential challenges, our sys-
tem will utilize a three-phased consistency check. In the first

Figure 2: An example of the Overcooked environment. For
an evaluation of our system, we would extend layouts used
in previous papers to include more tasks and (potentially)
more than two agents.

phase, our system will perform a semantic check, wherein
we leverage an LLM’s implicit common-sense and linguis-
tic knowledge to check if any of the issued natural language
commands are in conflict. After a user has issued a com-
mand via the language interface, the consistency monitor
prompts the language interface’s LLM to check this com-
mand against commands that have been previously issued. If
a potential conflict is identified, the language interface will
communicate this to the user and engage them in a correc-
tive dialogue. During this dialogue the language interface
will prompt the user to either amend or remove one of the
candidate constraints, or ignore the warning and attempt to
perform the task assignment without changing any of the
constraints.

If the semantic check passes, the consistency monitor en-
ters phase two. In this phase, our system will attempt to find
a solution to the MILP using the constraints provided. If a
solution cannot be found, the consistency monitor will per-
form a relaxation check, wherein our system will attempt to
solve the MILP by relaxing constraints in Cuser using, for
example, a branch and bound relaxation approach (Clausen
1999). While this may produce a solution, the solution may
violate the user’s stated expectations for the task assignment.
Thus, the consistency monitor sends the relaxed constraints
to the language interface, wherein it will attempt to pro-
duce natural language explanations of the new constraints
using its LLM. Much like in the first phase, the user will
be prompted to accept, reject, or modify the proposed con-
straints.

The third and final phase is initiated when a relaxed so-
lution cannot be found. In this phase, the consistency mon-
itor will perform an ablation check, wherein it will attempt
to solve this MILP by iteratively removing constraints from
Cuser. Removed constraints are then sent to language inter-



face, wherein a natural language explanation is generated,
prompting the user to try and reformulate their commands,
if they desire.

Evaluation
We plan to run a user-study in order to evaluate our ap-
proach. In this section we describe our planned experimental
setup and outline questions we wish to be able to answer.

Environment and Setup
Our experiments will involve naive human users interact-
ing with and overseeing a task-assignment system during a
simulated multi-agent task. A good candidate for this task
is the Overcooked environment (Carroll et al. 2019; Fig. 2),
which has been gainfully employed across machine learning
and human-AI teaming research (e.g. Hu et al. 2021; Aroca-
Ouellette et al. 2023; Pearce et al. 2023). The Overcooked
environment is a gridworld based on the popular video game
Overcooked, in which agents must “cook” various dishes
by performing actions like gathering ingredients and plat-
ing dishes throughout the shared environment. The shared
reward for the agents is based on the number of dishes they
are collectively able to prepare within the time limit. This
domain is ideal for our purposes as it rewards teamwork
and coordination among agents, though is simple enough
for new users to quickly understand and follow. At the same
time, effectively coordinating agents can be a challenge de-
pending on the arrangement of the environment.

Experiments
With our experiments we wish to evaluate our approach
along subjective and objective criteria. Our research aims
can be summarized by the following three questions:

1. How accurately can our LLM-based language interface
transform natural speech into valid symbolic constraints,
and vice-versa?

2. How effectively can users interact with our system to
generate productive and viable assignments?

3. How well do users’ expectations for the system’s behav-
ior align with its actual behavior, and how does this im-
pact user perceptions of the system overall?

In order to answer these questions, we employ a between-
subjects user study. In our two experimental conditions, par-
ticipants will be tasked with overseeing a game of Over-
cooked by providing supervisory constraints to teams of AI-
controlled agents, with the goal of maximizing the agents’
score across all rounds. In the first condition, users will pro-
vide these constraints using the language interface described
above. In the second condition, users will be interacting
with a system inspired by (Petersen, Kleiner, and Von Stryk
2013), where desired constrained are selected and applied
using a drop-down GUI interface. Our control condition will
have the task assignment and scheduling system running au-
tonomously, without user oversight.

Answering question 1. will require us collect natural lan-
guage commands from participants and their ground-truth

constraint counterpart, and comparing them against the out-
put to our model. Empirically quantifying the accuracy of
the model in this regard is critical, as the ability to effectively
translate between user speech and symbolic constraints is
central to the utility of our approach. Our primary empiri-
cal result will come from an exploration of question 2. We
intend to compare participants across our experimental and
control conditions in terms how well the agents perform in
the Overcooked environment. This will allow us to quan-
tify the performance impact a human-in-the-loop has on the
assignment process as a function of interaction paradigm.
Question 3 will be explored via post-experiment question-
naire. This questionnaire will enable us to interrogate the
potential trade-offs between performance and interactivity.

Conclusion and Future Work
In this paper we outline ongoing work towards a flexible
natural language interface for a multi-agent task-assignment
system. Our proposed system enables users to modify and
inspect the constraints on a MILP via spoken dialogue,
granting them control and insight over the task assignment
process. We provide a high level overview of the system ar-
chitecture, and outline a planned user study for evaluating
our approach.

As this work is in its preliminary stages, there are still a
number of open questions and challenges that need to be re-
solved. For instance, the complete set of symbols that com-
prise the MILP and its constraints, and thus the scope of con-
straints the users can apply, has yet to be fully determined.
Similarly maximizing the accuracy our language interface
for producing constraints, while minimizing LLM “halluci-
nations” (Dinan et al. 2018) remains an ongoing challenge.
Nevertheless, when our system is complete, we believe it
will bridge the gap between non-technical users and task as-
signment systems, and foster more effective human-AI part-
nerships.

Acknowledgements
This work was supported by the Army Research Laboratory
under Grant W911NF-21-2-02905.

References
Ahmed, T.; and Devanbu, P. 2022. Few-shot training LLMs
for project-specific code-summarization. In Proceedings of
the 37th IEEE/ACM International Conference on Automated
Software Engineering, 1–5.
Aroca-Ouellette, S.; Aroca-Ouellette, M.; Biswas, U.; Kann,
K.; and Roncone, A. 2023. Hierarchical Reinforcement
Learning for Ad Hoc Teaming. In Proceedings of the 2023
International Conference on Autonomous Agents and Multi-
agent Systems, 2337–2339.
Brawer, J.; Ghose, D.; Candon, K.; Qin, M.; Roncone, A.;
Vázquez, M.; and Scassellati, B. 2023. Interactive Policy
Shaping for Human-Robot Collaboration with Transparent
Matrix Overlays. In Proceedings of the 2023 ACM/IEEE In-
ternational Conference on Human-Robot Interaction, 525–
533.



Carroll, M.; Shah, R.; Ho, M. K.; Griffiths, T.; Seshia, S.;
Abbeel, P.; and Dragan, A. 2019. On the utility of learn-
ing about humans for human-ai coordination. Advances in
neural information processing systems, 32.
Clausen, J. 1999. Branch and bound algorithms-principles
and examples. Department of Computer Science, University
of Copenhagen, 1–30.
Dinan, E.; Roller, S.; Shuster, K.; Fan, A.; Auli, M.; and
Weston, J. 2018. Wizard of wikipedia: Knowledge-powered
conversational agents. arXiv preprint arXiv:1811.01241.
Gombolay, M.; Wilcox, R.; and Shah, J. 2013. Fast schedul-
ing of multi-robot teams with temporospatial constraints.
Gombolay, M. C.; Gutierrez, R. A.; Clarke, S. G.; Sturla,
G. F.; and Shah, J. A. 2015. Decision-making authority, team
efficiency and human worker satisfaction in mixed human–
robot teams. Autonomous Robots, 39: 293–312.
Hu, H.; Lerer, A.; Cui, B.; Pineda, L.; Brown, N.; and Foer-
ster, J. 2021. Off-belief learning. In International Confer-
ence on Machine Learning, 4369–4379. PMLR.
Huang, S.; Jiang, Z.; Dong, H.; Qiao, Y.; Gao, P.; and Li,
H. 2023. Instruct2Act: Mapping Multi-modality Instruc-
tions to Robotic Actions with Large Language Model. arXiv
preprint arXiv:2305.11176.
Hudeček, V.; and Dušek, O. 2023. Are LLMs All
You Need for Task-Oriented Dialogue? arXiv preprint
arXiv:2304.06556.
Karakikes, M.; and Nathanael, D. 2023. The effect of cogni-
tive workload on decision authority assignment in human–
robot collaboration. Cognition, Technology & Work, 25(1):
31–43.
Liang, J.; Huang, W.; Xia, F.; Xu, P.; Hausman, K.; Ichter,
B.; Florence, P.; and Zeng, A. 2023. Code as policies:
Language model programs for embodied control. In 2023
IEEE International Conference on Robotics and Automation
(ICRA), 9493–9500. IEEE.
Omar, A.-B.; and Payeur, P. 2019. Probabilistic task assign-
ment for specialized multi-agent robotic systems. In 2019
IEEE International Symposium on Robotic and Sensors En-
vironments (ROSE), 1–7. IEEE.
Pearce, T.; Rashid, T.; Kanervisto, A.; Bignell, D.; Sun, M.;
Georgescu, R.; Macua, S. V.; Tan, S. Z.; Momennejad, I.;
Hofmann, K.; et al. 2023. Imitating human behaviour with
diffusion models. arXiv preprint arXiv:2301.10677.
Pedroso, J. P. 2011. Optimization with gurobi and python.
INESC Porto and Universidade do Porto,, Porto, Portugal,
1.
Petersen, K.; Kleiner, A.; and Von Stryk, O. 2013. Fast task-
sequence allocation for heterogeneous robot teams with a
human in the loop. In 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 1648–1655. IEEE.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wang, Z.; and Gombolay, M. 2020. Learning scheduling
policies for multi-robot coordination with graph attention

networks. IEEE Robotics and Automation Letters, 5(3):
4509–4516.
Yu, W.; Gileadi, N.; Fu, C.; Kirmani, S.; Lee, K.-H.; Arenas,
M. G.; Chiang, H.-T. L.; Erez, T.; Hasenclever, L.; Hump-
lik, J.; et al. 2023. Language to Rewards for Robotic Skill
Synthesis. arXiv preprint arXiv:2306.08647.


