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Abstract
Imagine a service robot developed in the United States
(US) being deployed in a public space in Israel. Due
to the cultural differences, the robot from a “contact-
averse” culture (i.e., the US) might find it difficult to
find its way when navigating the crowd, as people from
a “contact-tolerant” culture (i.e., Israel)—where a sub-
tle touch between strangers is not uncommon—will al-
ways move closer to the robot than it would expect; con-
versely, an “Israeli” robot may be found too aggressive
in US social spaces. Currently, these cultural differences
hinder the ability to plug-and-play social robots in dif-
ferent cultures due to the requirement of extensive ex-
tra engineering effort. This paper presents a comparison
of the results from an existing study conducted in the
US, to the same study design that was deployed in Is-
rael. This comparison shows the clear, identifiable cri-
teria that a socially-aware robot will need to consider
when navigating a new culture. More generally, the re-
sults from this paper offer a first step to identifying the
cultural differences in social robot navigation, so we can
structure solutions to be compatible with these cultures
and with novel ones, with minimum adaptation.

Introduction
We are entering a “golden era of robot adoption” (Gurdus),
as technological advances are enabling global market shifts
from industrial robots designed to optimize the quantity of
products for an organization (e.g., a business) to service
robots designed to optimize the quality of services for an
individual (i.e., a person). Unfortunately, this potential has
been hindered by poor experiences and acceptance by the
people in the target domains. To perform their tasks, service
robots must operate in proximity to humans, including those
whom the robot is directly serving as well as anyone else
the robot indirectly encounters during the process. These
robots are often mobile and rely on dynamic path-planning
algorithms to autonomously navigate to their desired desti-
nation. Traditional robot navigation techniques often break
down, as calculated robot trajectories violate social norms
influenced by culture, causing the general public’s resis-
tance against the adoption of these mobile robot technolo-
gies in human-inhabited public spaces (The Seattle Times
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Figure 1: The two hallway-like environments in which the
experiments were conducted. The left image shows the US
environment and the right shows the Israel environment.

2022; Bloomberg 2017; Haaretz 2022; Cities Today 2021).
Socially aware robot navigation has started to address this
issue by differentiating between objects and humans within
the environment, evaluating not just the objective safety of
robots and objects, but also the subjective experiences of co-
present humans during path planning and motion execution.
However, as these human-centered navigation strategies gar-
ner success in one environment, they subsequently strug-
gle in others, failing to capture micro- and macro-cultural
differences expressed as social norms within small groups
(e.g., families and workplaces) and large groups (e.g., com-
munities and countries), respectively. For example, one of
these norms is tolerance to contact between strangers: a ser-
vice robot developed for a contact-averse culture (e.g., the
US) being deployed in a contact-tolerant culture (e.g., Israel)
might find it difficult to find its way around, as crowds in the
contact-tolerant culture will always move closer to the robot
than it would expect; conversely, a mobile robot designed
for a contact-tolerant culture might be found too aggressive
in a contact-averse culture (Hall 1966).

The embodiment of these cultural differences is often in-
formed by “proxemics”, which is the study of human psy-
chophysical perceptions and psychological preferences with



Gaze Direction Walk Alignment
US Israel US Israel

Conflict Type Congruent Incongruent Congruent Incongruent Left Right Left Right
Partial 25% 45% 8% 19% 45% 28% 50% 40%
Full 0 3% 23% 54% 1% 3% 35% 40%

No Conflict 75% 52% 69% 27% 54% 69% 15% 20%
Total Interactions 60 85 52 48 72 73 48 52

Table 1: Summary of the Interactions in the Trials in the US and in Israel.

respect to the physical space around them (Hall 1966; Mead,
Atrash, and Matarić 2012; Mead, Atrash, and Matarić 2013).
Proxemic behavior is a dynamic process governed by the
desired sensory experiences (e.g., visual, auditory, kines-
thetic, tactile, etc.) of individuals in the environment (Hall
1963; Mead 2015; Mead and Matarić 2016), the parame-
ters for which largely vary by culture (Hall 1966); however,
formal cultural parameterizations and representations have
been under-explored within socially aware robot navigation.
To the best of our knowledge, no existing singular model
of social robot navigation work has taken into consideration
cultural differences and has been tested in more than one
culture. To address this gap, we propose a preliminary in-
vestigation of cultural influence on collision avoidance. We
present a replication of a social navigation study from the
US that we re-conducted in a new country/culture (Israel)
with different navigational norms than in the original study,
and we discuss the findings from these trials. The results of
this study help us quantify the effect of different proxemic
models between the two cultures, by showing that in the US
the number of full-contact collisions was much lower than in
Israel, and that the norm of right-alignment to avoid collision
is more apparent in the US compared to Israel. These results
encourage us to continue and explore culturally adaptive so-
cial navigation algorithms and evaluation metrics, where we
will use these identified parameters as controllable variables
of a culturally-aware social navigation algorithm.

Related Work
We focus on work that goes beyond simply treating humans
as dynamic, non-reactive obstacles (Burgard et al. 1999;
Thrun et al. 2000). Researchers have modeled the uncer-
tainty of human movements (Joseph et al. 2011; Bennewitz
et al. 2005; Shiomi et al. 2014; Unhelkar et al. 2015) or pre-
scribed social norms for navigating agents (Knepper and Rus
2012; Sisbot et al. 2007; Luber et al. 2010), and then de-
vised navigation planners that can take such uncertainty into
account for or abide by such selected rules. These models
are based on human’s behavior features, such as proxemics
(Hall 1966; Goffman 2008; Hayduk 1981; Kirby, Simmons,
and Forlizzi 2009; Takayama, Dooley, and Ju 2011; Torta,
Cuijpers, and Juola 2013; Mead and Matarić 2016,?), inten-
tions (Dragan, Lee, and Srinivasa 2013; Kruse et al. 2012;
Szafir, Mutlu, and Fong 2015; Mavrogiannis, Thomason,
and Knepper 2018; Hart et al. 2020), and social forma-
tions and spaces (Vázquez et al. 2015; Vroon et al. 2015;
Fiore et al. 2013; Shiomi et al. 2014; Van den Berg, Lin,
and Manocha 2008). More recently, machine learning ap-

proaches have been leveraged to learn representations or
costmaps to implicitly capture the models and features men-
tioned above (Kim and Pineau 2016; Kretzschmar et al.
2016; Vasquez, Okal, and Arras 2014; Ziebart et al. 2009),
to learn the parameterization of navigation planners (Liang
et al. 2021; Xiao et al. 2020), or even to learn an end-to-
end navigation policy that maps directly from raw or pre-
processed perceptions of the humans in the scene to motor
commands that drive the robot (Chen et al. 2017b,a; Ev-
erett, Chen, and How 2018). However, these existing ap-
proaches to social robot navigation suffer from drawbacks
at least in two aspects: (1) most of these social robot nav-
igation approaches have not been deployed in the wild for
an extended period of time and their social compliance has
not been properly benchmarked; and (2) most existing ap-
proaches have only considered either hand-crafted rules or
collected navigation data rooted in one single culture. When
facing a new culture, it is unclear how the existing system
would behave and how much effort is required to enable
adaptation (e.g., having to recreate all the models, social
norms, and representations for that culture or recollecting
another navigation dataset in that culture). These two draw-
backs largely limit the wide adoption of autonomous mobile
service robots in the wild and in different cultures around
the globe, which is supported by the findings of cultural dif-
ferences from our human ecological field study.

Experimental Design
In our human ecological field study, we investigated the ex-
tent to which social navigation interactions in shared spaces
may be affected in different cultures by violating underlying
social norms; for example, head pose and gaze are predic-
tive of navigation trajectory (Patla, Adkin, and Ballard 1999;
Unhelkar et al. 2015) and right-alignment is a default behav-
ior for collision avoidance considering traffic rules. The first
study was performed in a campus hallway at Anonymized
University in the US, as part of a paper that was published on
the implication of gaze direction on pedestrians (Hart et al.
2020). We extended this study with a second run, by looking
at a circumscribed sidewalk at Anonymized University in Is-
rael. Both locations become crowded during class changes.

In this study, research confederates walk in crowded ar-
eas, and when reaching a frontal approach with a pedestrian
they have to shift either to the left or to the right to pass the
pedestrian without a collision. The distance at which this
shift occurred was set to be around 1m from the pedestrian,
which is estimated to be the distance at which pedestrians
will feel an intrusion into their personal space. In each coun-



try, the chosen confederates are native to the underlying cul-
ture and navigational social norms, such as acceptable pass-
ing distances and personal spaces. Moreover, for each in-
teraction, the confederates chose to either look congruently
with their movement direction, or the opposite way.

If the confederate and the pedestrian encounter problems
walking around each other or nearly collide, the interaction
is annotated as a “conflict”. Conflicts are further divided
into “full” (in which the two parties gently bump into each
other) vs. “partial” (in which they brush against each other
or abruptly shift to the left or right to pass after coming into
conflict).

Two sets of conditions are evaluated in this study:
1. Gaze Direction was used to evaluate the influence of the

confederate’s gaze direction on the decision of the pedes-
trian to shift their movement direction in advance of a
potential collision.

2. Walk Alignment was used to evaluate the influence of
the direction the confederate shifted to on the decision of
the pedestrian to move or not.

Results
In total, 245 interactions were recorded in these experi-
ments, 145 in the US and 100 in Israel. Table 1 summa-
rizes the results from these two experiments: on the left is
the Gaze Direction experiment (highlighted in red), and on
the right (highlighted in blue) is the Walk Alignment exper-
iment. As seen in this table, there are significantly more full
conflicts and much fewer partial conflicts in Israel than in
the US, regardless of whether the confederates signal about
their goal direction using their gaze. The high number of
full collisions (i.e., the interaction between the confederate
and the pedestrian is more likely to involve physical contact)
suggests that the navigation culture in Israel is less contact-
averse, a factor to consider for social robot navigation.

For the second part of the evaluation, the table shows on
the right the number of partial and full collisions split by
whether the confederate passes the pedestrians from the left
or from the right (highlighted in red). The number of colli-
sions is significantly higher when the confederates turn left
in the US, but there is no significant difference to either side
in Israel. This result implies that while right-alignment is a
default behavior for collision avoidance in the US, it is not
the case in Israel, making it an additional factor to consider
when designing a socially compliant mobile robot. The re-
sults of these two sets of experiments show that the US and
Israel cultures use different social norms regarding collision
avoidance in a crowded space.

Conclusion
In this paper, we present a study design for the evaluation
of collision avoidance strategies across cultures with dif-
ferent navigational norms. We examined a study that orig-
inally took place in the US, and re-conducted it in Israel.
As such, this new study covers two cultures: the US and Is-
rael. We show the different behaviors of pedestrians in these
countries under varying interaction modes: with a distract-
ing gaze, and with an unconventional alignment. We ob-

served that in Israel, full-contact collisions were more com-
mon, and left-alignment was less confusing than in the US.
These results encourage us to continue and pursue additional
comparisons of social navigation across cultures, such as by-
passing and person following. Moreover, we expect that the
results of this study will inform us in the design of new social
robot navigation algorithms that will be culturally adaptive.
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