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Abstract

For effective human-agent teaming, robots and other artifi-
cial intelligence agents must adapt quickly to their human
partner’s strengths and preferences. Most prior work typi-
cally assume that either the agent or the human acts near-
optimally. In real-world collaboration, however, both agents
and humans can be suboptimal, due to a lack of information
or biases in their decision-making. In this work, we seek to
maximize human-robot team performance under suboptimal-
ity, where both the human and robot agents are suboptimal to
varying extents due to partial knowledge of the environment.
We adopt an online Bayesian approach that allows the robot
to infer people’s preferences and willingness to comply with
the robot’s assistance in a sequential decision-making game.
Our results show that 1) user preferences and team perfor-
mance can vary with different robot intervention styles, and
2) our proposed Bayesian approach can effectively maximize
team performance in a pilot study.

Introduction
Robots are increasingly being deployed to assist humans in
highly-demanding, safety-critical scenarios such as emer-
gency response for disasters and terrorist attacks (Nagatani
et al. 2013; Casper and Murphy 2003; DeDonato et al.
2015). Robots can assist by taking over tasks to alleviate hu-
man workload or acquiring information that complements
the human’s knowledge. However, both humans and robots
have their own limitations while working in such scenarios.
For instance, robots may make errors due to high uncertainty
in unstructured environments, and humans may make errors
from stress and fatigue. In this work, we look at mixed-
initiative autonomy to maximize human-robot team perfor-
mance when both agents act suboptimally.

In human-robot teams, mixed-initiative interaction refers
to a collaborative strategy where teammates opportunisti-
cally seize/relinquish initiative from/to one another during
a mission, where initiative can range from low-level mo-
tion control to high-level goal specification (Jiang and Arkin
2015). We study mixed-initiative interactions in a teaming
task where both the human and the robot only have partial
knowledge of the environment and thus act suboptimally.
The human and the robot have asymmetric capabilities and

Presented at the AAAI Fall Symposium on Artificial Intelligence
for Human-Robot Interaction (AI-HRI) 2023

must collaborate (seize/relinquish control) to reach a goal lo-
cation, with the human teleoperating the robot, similar to ur-
ban search-and-rescue (USAR) missions (Isaacs et al. 2022).
The robot can choose to intervene or override the human’s
actions, and the human can decide to oppose or comply
with the robot. Our goal is to learn a domain-agnostic, on-
line robot policy that determines when and how to intervene
to maximize team performance by modeling human latent
states. We propose a Bayesian approach that is adaptable to
diverse users in mixed-initiative settings.

Achieving ad-hoc, zero-shot coordination with novel hu-
man partners has been a longstanding challenge in AI (Klien
et al. 2004; Paleja et al. 2021). Recent works aim to achieve
human-AI collaboration either from human-human demon-
strations (Carroll et al. 2019; Hong, Dragan, and Levine
2023) or via self-play without any human data (Strouse et al.
2021; Zhao et al. 2023). However, these approaches look
at domains where both humans and agents have symmetric
capabilities. In contrast, our work delves into human-agent
teaming with asymmetric capabilities, emphasizing the need
to actively seize or relinquish control to achieve team objec-
tives. Further, we seek to optimize team performance when
all teammates are suboptimal, which is seldom explored in
human-robot teams (Lee et al. 2020).

We model the human-robot team as a Partially Observable
Markov Decision Process (POMDP) (akin to prior works in
HRI (Chen et al. 2018; Lee et al. 2020)). The main idea
underlying our approach is to learn a robot policy that is
conditioned on the uncertainty in the robot’s estimation of
human behavior. Initially, the robot has high uncertainty
about user preferences and willingness to comply. Through
Bayesian Learning during interactions, the robot’s estima-
tion becomes more refined, reducing its uncertainty. To en-
sure the feasibility of our approach to run online with novel
users, we employ a Monte-Carlo search (scalable to large
state spaces) with an approximated belief space and use con-
jugate priors to perform belief updates efficiently.

The key contributions of the work are two-fold. First,
we conduct a user study to show that user preferences and
team performance can vary with different robot intervention
styles. Next, we develop an adaptive robot policy to inter-
vene users and demonstrate its effectiveness in improving
team performance with novel users via a pilot study.



Preliminaries
We model the human-robot team as a Bayes-Adaptive Par-
tially Observable Markov Decision Process (BA-POMDP)
(Ross, Chaib-draa, and Pineau 2007), which enables us to
learn a robot policy that dynamically estimates POMDP
model parameters during interactions, and is conditioned on
the model estimation uncertainty.

Partially Observable Markov Decision Process
A Partially Observable Markov Decision Process (POMDP)
is defined as a tuple M = (S,A,O, T , E , d0, R, γ) where
S is a set of states s ∈ S, A is a set of actions a ∈ A, O
is a set of observations o ∈ O, T (st+1|st, at) is the state
transition probabilities, E(ot|st) is the emission function, d0
is the initial state distribution, R(s, a) describes the reward
of taking action a in state s, and discount factor γ ∈ (0, 1].

The agent’s objective in a POMDP is to learn a policy π
that maximizes the expected cumulative discounted reward
(return). Given the agent’s inability to access the true state,
it relies on the history of actions and observations, h to learn
the policy. Based on h, the agent maintains a probability dis-
tribution or belief b ∈ B over states and updates the belief
with subsequent interactions. Belief updates can be achieved
via the Bayes rule (infeasible for large state spaces) or with
an unweighted particle filter (approximate update). Hence,
the POMDP policy π is a mapping from B → A.

Partially Observable Monte-Carlo Planning
Partially Observable Monte-Carlo Planning (POMCP) is an
online solver that extends the Monte-Carlo Tree Search
(MCTS) to POMDPs (Silver and Veness 2010). POMCP
uses a UCT search to select actions and an unweighted par-
ticle filter for belief updates. POMCP operates on a search
tree of histories h instead of states, where each node in the
tree stores statistics – visitation count N(h), value/mean re-
turn V (h), and belief b(h). The algorithm performs online
planning through multiple simulations, incrementally build-
ing the search tree. Each simulation starts by sampling an
initial state s ∼ b(h). The agent’s action selection involves
a tree search policy within the search tree, optimizing the
UCT objective, and a rollout policy (often random), outside
the search tree. The return of each simulation is used to up-
date the statistics for all visited nodes. Each simulation adds
a new node to the tree, corresponding to the first new history
encountered in the rollout. POMCP terminates based on pre-
set criteria (e.g., maximum number of simulations).

Bayes Adaptive POMDP
Prior works generally assume that the POMDP is fully speci-
fied (i.e., the model parameters T , E are known) (Lauri, Hsu,
and Pajarinen 2022) which is unrealistic in human-robot col-
laboration as we neither have access to the true latent states
(e.g., trust and preferences) of the human partner nor how
these states change during the interaction. Further, estimat-
ing T , E using maximum likelihood methods do not capture
differences across individuals (Chen et al. 2018).

To address these challenges, we adopt the Bayes Adap-
tive POMDP (BA-POMDP) framework (Ross, Chaib-draa,

and Pineau 2007) — a Bayesian Reinforcement Learning
approach for solving POMDPs. The BA-POMDP employs
Dirichlet count vectors χ to represent uncertainty over pa-
rameters (T , E). Since the POMDP states are hidden, χ can-
not be explicitly computed and is also included in the state.

Solving BA-POMDPs is difficult as they are infinite-state
POMDPs. Ross et al. introduced an online planner that
reduces the BA-POMDPs to finite models (Ross, Chaib-
draa, and Pineau 2007). Later Katt et al. proposed the BA-
POMCP (an extension of POMCP), the current state-of-
the-art, online algorithm for solving BA-POMDPs (Katt,
Oliehoek, and Amato 2017). In this work, we use a vari-
ant of the BA-POMCP algorithm to optimize performance
in suboptimal human-robot teams.

Method
In this section, we first define the human-robot team model
for mixed-initiative interactions and then describe how we
learn an adaptive robot policy for our current setting.

Human-Robot Team Model
State Space In our human-robot team model, the state
space combines the world state and user latent states s =
(x, z). The world state x ∈ X , refers to the task status that
the human-robot team is working on, and the latent states
z ∈ Z can refer to the user’s trust or tendency to comply
with the robot, and their task execution preferences. The cur-
rent world state is observable to both humans and robots.
We focus on suboptimal human-robot teaming, assuming
that the suboptimality arises from task-related errors or in-
complete knowledge, i.e., both agents may make errors or
cannot observe the full world state. Thus, the world state as
observed by the robot may not always align with what the
human observes (xR

t ̸= xH
t ,∀t). The user’s latent states are

not accessible to the robot, and the robot has to infer these
states by observing the user’s actions.

Action Space As we are planning from the robot’s per-
spective, the action space encompasses the actions aR ∈ AR

that the robot can take in the environment. In our mixed-
initiative collaborative scenario, we assume that the robot
first observes the human action and then selects its action.
The robot can choose to either execute, intervene, or over-
ride the user’s actions. Additionally, the robot may choose
to explain whenever it intervenes or overrides the user.

Observation Space The robot’s observations are human
actions aH ∈ AH . At a high level, the user actions
can be categorized as compliance or non-compliance with
the robot, i.e., the user can either choose to comply with
the robot’s last choice or oppose/verify the robot’s last
choice. We assume that the human’s action depends on
their knowledge of the current world state xt and the his-
tory of interactions ht−1 with the robot, i.e., the human
follows the policy – πH(aHt |xt, ht−1), where ht−1 =
{aH0 , aR0 , a

H
1 , aR1 , · · · , aHt−1, a

R
t−1}. Similar to prior work

(Chen et al. 2018), we assume that the user’s latent state
zt is a compact representation of the interaction history
(zt ≈ ht−1). Thus, πH(aHt |xt, ht−1) ≈ πH(aHt |xt, zt).



Transition and Emission Models The transition model T
defines the probability p(st+1|st, aRt ). In our model, st =
(xt, zt). Thus we can rewrite the transition model as:

p(st+1|st, aRt ) =
∑
aH

p(st+1|st, aRt , aHt )× πH(aHt |xt, zt)

=
∑
aH

p(xt+1|xt, a
R
t , a

H
t )×p(zt+1|zt, aRt , aHt )×πH(aHt |xt, zt)

The second line in the above equation comes from our as-
sumption that given the user’s action, world state dynamics
are independent of the user’s latent state dynamics. In our
collaborative scenario, the world state dynamics are deter-
ministic and known (need not be estimated). Hence, we only
estimate the latent state dynamics as part of the BA-POMDP.

The emission model E for the human-robot team refers to
the human policy πH(aHt |xt, zt) which is also unknown to
the robot and must be estimated to solve the BA-POMDP.

Reward Function This work focuses on maximizing per-
formance in a teaming task where both humans and robots
can take initiative but are suboptimal. To do so, we con-
sider the reward to be a performance metric for the decision-
making task. In our model, the reward is positive for achiev-
ing the task goal and negative for failing task constraints.

Adaptive Robot Policy for User Interventions
We adopt a modified version of the Bayes-Adaptive POMCP
(BA-POMCP) (Katt, Oliehoek, and Amato 2017) and dis-
cuss the key changes we make to this algorithm.

Belief Approximation Similar to POMCP, BA-POMCP
constructs a lookahead search tree through environment sim-
ulations and maintains a belief over latent parameters using
an unweighted particle filter to determine the best action at
each time step. However, in BA-POMCP, we need to main-
tain a belief over both the latent states |S| and the model
parameters T , E (|S|2 × |A|+ |S| × |A| × |O| parameters).
Computing the posterior update over such a large space can
be expensive. Further, it is difficult for the posterior distribu-
tion to converge to the true parameters, especially when we
only have access to limited interactions.

Hence, we leverage the independence assumption be-
tween the world state and the latent state transition to ap-
proximate the belief in each node in the search tree. Since
we only need the human action to determine the next world
state, we choose to maintain the belief only over the user ac-
tion space, instead of all latent states and model parameters.
We compute the posterior update for the belief bt+1 from the
prior belief and interaction history ht at each node.
Simulating Human Policy In BA-POMCP, we need to
simulate human actions during the rollout for constructing
the search tree. As the robot lacks direct knowledge of the
human policy, we maintain a belief over the space of pos-
sible human policies. We model the true human policy as
a Bernoulli distribution, with an unknown parameter µ that
signifies the likelihood of user compliance with the robot
for a given interaction history h. We approximate the belief
over the human policy using particles, where each particle

Figure 1: Frozen Lake Domain used in this study. Figure
1(a) shows the overall game layout. Figure 1(b) depicts robot
intervention styles, and Figure 1(c) shows the human and
robot accuracies for identifying slippery grids.

acts as a potential candidate for the true human policy. We
model each particle as a beta distribution – the conjugate
prior for Bernoulli distributions so that the posterior updates
can be computed efficiently. To simulate the human action
during rollout, we sample a particle from the belief at the
current node and use it to estimate the probability of user
compliance with the robot. We update the particle (beta dis-
tribution) based on interaction experiences, as we continue
the simulation until termination.

Human Subjects Experiments
Domain
We modified the Frozen Lake domain from OpenAI Gym
(Brockman et al. 2016) for mixed-initiative human-robot
teaming. The users must collaborate with a robot to navigate
an 8×8 frozen lake grid from start to goal in the fewest steps,
while avoiding holes and slippery regions. We modified the
original domain to only have certain grids as slippery instead
of a uniform slipping probability throughout. Stepping on a
slippery region leads to falling into a hole. Both the human
and the robot can only observe if adjacent grids are slippery.

To enforce suboptimality, we added errors in the human
and robot observations of slippery grids. These errors in-
clude – False Positives (seeing a safe grid as slippery), and
False Negatives (seeing a slippery region as safe). More-
over, fog covers some areas of the map, reducing human
visibility. The human and robot accuracies for identifying
slippery regions are shown in Figure 1. During the game, the
human teleoperates the robot across the lake, but the robot
may intervene or take control if it finds that the user chose a
longer or unsafe path (e.g., slippery regions or holes) to the
goal. Additionally, the user is equipped with a high-quality
(100% accurate) sensor for detecting slippery regions in ad-
jacent grids, but using it incurs a point cost. The overall per-
formance or game reward is computed as: 90−steps taken−
10×# falls into hole−2×# detections+30×I[goal reached].
Our environment is inspired by USAR missions, where hu-
mans teleoperate robots but humans and robots can have
complementary skills and varying domain knowledge.



(a) Performance v/s Intervention (Study 1) (b) Preference v/s Intervention (Study 1) (c) Performance v/s Robot Policy (Study 2)

Figure 2: Results from our Human-Subjects Experiments: Higher reward and higher preference rank is desirable. The error bars
imply standard error in Figures 2a and 2c (Statistical significance: ** implies p < 0.01 and *** implies p < 0.001).

Experiment Design
We propose a two-phase user study design to 1) examine
how users respond to different robot intervention styles with
and without explanations in a controlled setting (Data Col-
lection Study) and 2) evaluate human-robot team perfor-
mance with our proposed approach (Evaluation Study).

Experiment Conditions For the data collection study, we
employ a 1× 5 within-subjects experiment to examine user
responses to various robot interventions. These interventions
include – no assist: the robot does not intervene (baseline),
interrupt: the robot stops the user from executing an ac-
tion, take-control: the robot overrides the user’s action with
its own action, interrupt+explain: the robot interrupts and
explains, take-control+explain: the robot takes over con-
trol and explains. To ensure consistency across intervention
strategies, the robot employs the same handcrafted heuristic.

In the evaluation study, we employ a 1×3 within-subjects
experiment to compare human-robot team performance un-
der different robot policies. The examined policies are our
proposed approach, BA-POMCP, the heuristic policy (used
in the data collection study), and an adversarial policy (BA-
POMCP optimized for inverse reward). We include the ad-
versarial policy as an additional adaptive baseline. To per-
form a balanced comparison, we ensure that the run times of
all policies are identical in the evaluation study.

Metrics For both studies, we assess user preferences and
performance using subjective and objective measures re-
spectively. Subjective measures include trust (Muir and Muir
1989), likeability (Bartneck et al. 2009), and willingness
to comply (Raemdonck and Strijbos 2013) (adapted from
human-human interactions for HRI) measured via 5-point
Likert scales. Questionnaires were administered after each
round. Demographic data, education, prior robotics experi-
ence, and personality are collected via a pre-study question-
naire. At the end of the study, users ranked their preferences
for the different robot agents. Objective performance was
assessed based on the total reward obtained in each round.

Participants and Procedure We recruited 30 subjects
(Age: 25.56 ± 3.38, Female: 33%) for the data collection
study and six subjects (preliminary analysis) for the eval-
uation study from a local university campus after IRB ap-
proval. The procedure was the same for both studies. Writ-

ten consent was obtained before the experiment, and par-
ticipants received written game instructions along with a
demonstration from the experimenter. The subjects had three
practice rounds to familiarize themselves and then partic-
ipated in ten rounds for the data collection study and six
rounds for the evaluation study (two rounds per condition).
The experiment order was randomized. The subjects were
informed to optimize their path to the goal and completed
pre- and post-study questionnaires in each round.

Results
Data Collection Study We find that on average the
human-robot team performed the best with the take-
control+explain agent and the least with the no-assist con-
dition, proving the necessity for robot interventions (Fig-
ure 2a). We used repeated measures ANOVA to obtain statis-
tical results. We did not find statistical significance between
intervention styles with and without explanations for perfor-
mance, but most users preferred to work with agents that
provided explanations (Figure 2b).

Evaluation Study We conducted a pilot study (n = 6),
where we limited the usage of the detection sensor (≤ 5) so
as to force the users to rely more on the agent. We found
that our proposed adaptive policy outperforms our baselines
in terms of human-robot team performance (Figure 2c). We
do not report statistical significance as our user population
is small. In future work, we will continue to evaluate our
algorithm with a larger subject population.

Conclusion
In this work, we propose an online Bayesian approach to op-
timize performance in human-robot teams when both agents
are suboptimal. Our focus is on learning a robot policy for
effective user intervention. We find that robot interventions
can improve performance while recognizing diverse user
preferences. Next, we develop an adaptive robot policy using
BA-POMCP and show its effectiveness in improving team
performance via a pilot study. We address the computational
challenges in BA-POMCP by using a Monte-Carlo search
with belief approximation and using conjugate priors to per-
form belief updates efficiently. In future work, we plan to
continue evaluating our algorithm with a larger population
and extend it to real-world human-robot collaboration tasks.
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